
GEOMICROBIOLOGY OF FERROMANGANESE DEPOSITS IN CAVES OF THE UPPER 
TENNESSEE RIVER BASIN 

 

A Thesis 
by 

MARY JANE CARMICHAEL 

Submitted to the Graduate School 
Appalachian State University 

in partial fulfillment of the requirements for the degree of 
MASTER OF SCIENCE 

May 2012 
Department of Biology 



 
GEOMICROBIOLOGY OF FERROMANGANESE DEPOSITS IN CAVES OF THE UPPER 

TENNESSEE RIVER BASIN 

 

A Thesis 
by 

MARY JANE CARMICHAEL 
May 2012 

APPROVED BY: 

Dr. Suzanna L. Bräuer  
Chairperson, Thesis Committee 

Dr. Sarah K. Carmichael 
Member, Thesis Committee 

Dr. Ece Karatan 
Member, Thesis Committee 

Dr. Steven W. Seagle 
Chairperson, Department of Biology 

Dr. Edelma D. Huntley 
Dean, Research and Graduate Studies 
 



Copyright by Mary Jane Carmichael 2012 
All Rights Reserved 



FOREWORD 

 The references, tables, and figures within this manuscript were prepared in accordance to the 

author submission requirements of Environmental Microbiology, the peer-reviewed journal co-

published by the Society for Applied Microbiology and Blackwell Publishing, Limited. Chapters Two 

and Three are manuscripts that are intended for separate submission to the journal. As such, these two 

Chapters have been formatted independently. 
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ABSTRACT 

GEOMICROBIOLOGY OF FERROMANGANESE DEPOSITS IN CAVES OF THE UPPER 
TENNESSEE RIVER BASIN 

Mary Jane Carmichael 

M.S., Appalachian State University 

Chairperson: Suzanna L. Bräuer 

Ferromanganese deposits in four epigenic cave systems (Carter Salt Peter Cave (CSPC), 

Daniel Boone Caverns, Rockhouse Cave, and Worley’s Cave) located within the Knox Dolomite 

bedrock formation of the upper Tennessee River Basin were analyzed to determine the role of 

microbes in the cycling of manganese and the transformation of cave mineralogy. It was hypothesized 

that the Mn-oxidizing microorganisms present in these caves would most likely be phylogenetically 

distinct from those studied in cave systems in other parts of the world, and that novel Mn-oxidizing 

microorganisms may be present.  ICP-OES measurements of Mn and Fe in cave ferromanganese 

deposits revealed Mn:Fe ratios of ca. 0.1-1.0. In cases where the Mn:Fe ratio approached 1.0, this 

represented an order of magnitude increase above typical Mn:Fe ratios for the bedrock, suggesting 

that Mn-biomineralization plays an important role in these sites. A SSU rRNA based molecular 

survey of one such site, Mn Falls (CSPC, Carter County, Tennessee), revealed that 21% of the 34 

dominant OTUs were closely related to known metal-oxidizing bacteria or clones isolated from 

oxidized metal deposits. qPCR estimates of total bacterial SSU rRNA genes in biofilm samples from 

CSPC represented 9x109 cells/g wet weight. Several cultures capable of Mn-biomineralization in vitro 

were isolated, some of which were obtained from high dilutions. SSU rRNA gene sequences of these 

isolates closely matched those of Leptothrix, Pseudomonas, Flavobacterium, Arthrobacter, and one 

species within a genus not previously known to oxidize Mn, Janthinobacterium. Thus, these results 
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expand our knowledge of the phylogenetic diversity of organisms capable of Mn(II) oxidation. 

Together, results from geochemical analyses, molecular surveys, and culture-dependent community 

surveys indicate that Mn(II)-oxidizing bacteria are abundant and environmentally relevant members 

of ferromanganese deposits in the study area, and that these cave systems harbor microbial 

communities unique from those found in caves in the southwestern United States.  

Over the duration of the study period (July 2009-2011), a marked decline in the intensity of 

ferromanganese deposits in the Mn Falls biofilm (CSPC) was noted. Because a sewage discharge may 

have occurred at this site prior to July 2009, it was hypothesized that the decline may have been 

associated with the gradual abatement of a sewage discharge or another acute, point source of 

pollution. Additionally, clone library data from the Mn Falls site revealed many sequences closely 

related to those found in contaminated and/or nutrient impacted sites. Therefore, a second line of 

study was initiated to assess the potential of sustained contamination at the Mn Falls site. A 

molecular-based survey using primer sequences selective for the SSU rRNA gene sequences within 

the human group of Bacteroides-Prevotella demonstrated evidence of fecal contamination at Mn Falls 

throughout the duration of the study period. A greater percentage of sequences clustering within the 

human group was detected in DNA extracted from the biofilm in July 2009 as compared to July 2011. 

Culture-dependent most probable number assays supported molecular-based evidence: an increase in 

the total number of culturable heterotrophic microbes at the Mn Falls sites was observed when 

compared to an adjacent site (Mud Trap Falls) within the same cave system, suggesting that the 

microbes in Mn Falls were adapted to higher nutrient concentrations. The change in biofilm 

appearance combined with water chemistry data (S.K. Carmichael, unpublished data) as well as 

molecular-based and culture-dependent results suggests that the bloom of Mn(II)-oxidizing bacteria 

may have been associated with a nutrient loading event. More work is needed to determine if blooms 

of Mn(II)-oxidizing bacteria may be widespread where contamination is prevalent. However, if this 

hypothesis is validated, monitoring of Mn-oxidizing microbial communities in shallow cave systems 

would provide a cost-effective method of assessing anthropogenic impact.  
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 CHAPTER 1: INTRODUCTION 

 Karst terrain is a heterogeneous landscape that covers 20% of the Earth’s dry land surface (White 

et al., 1995). Carbonate rocks are the primary bedrock in karst regions (White et al., 1995), and form the 

majority of the bedrock in eastern Tennessee (Oder, 1934). Other bedrock types, such as  volcanic rocks, 

unconsolidated sediments, or clastic sedimentary rocks, may be just as easily weathered and exhibit 

external features and internal drainage complexities that are similar to those found in carbonate rocks 

(Veni, 2002; Goeppert and Goldscheider, 2011), and are therefore termed pseudokarst. Geomorphology in 

carbonate-hosted karst landscapes is determined by the influence of weathering along existing geologic 

features such as joints and bedding planes (White et al., 1995; Northup et al., 2000; Christman and 

Culver, 2001; Engel et al., 2004; Ford, 2006). The characteristic features of karst regions include surface 

topography such as sinkholes, subsidence zones, and swallow holes. Subsurface features are characterized 

by the development of complex, dendritic internal drainage patterns (conduits) that can widen to form 

accessible regions known as caves and caverns (Palmer, 1991), which extend beyond the penetration of 

visible light (Northup and Lavoie, 2001).  

 Caves can form in a variety of bedrock substrates including carbonate rocks, evaporite rocks, and 

pseudokarst (Veni, 2002). Historically, cave ecology studies have been constrained to research in 

carbonate-hosted caves systems formed via one of two processes, sulfuric acid dissolution or carbonic 

acid dissolution. [However, it is important to note that research in pseudokarstic terrain is increasing, as 

lava tubes are recognized as astrobiological analogs (de los Ríos et al., 2011; Northup et al., 2011).] 

Sulfuric acid speleogenesis occurs via hypogenic processes as reduced sulfide rich groundwater upwells 

and comes in contact with the cave atmosphere. H2S is off-gassed and becomes oxidized to form sulfuric 

acid (H2SO4), which dissolves the carbonate rock and may eventually precipitate gypsum, CaSO4 (Engel 

et al., 2004). On a global scale, carbonic acid speleogenesis is the most common method of cave 
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formation and is characterized by epigenic processes: the dissolution of limestone by carbon dioxide in 

solution (H2CO3) (White et al., 1995). Microbes also play an active role in mineral weathering and 

precipitation in both sulfidic and epigenic caves, thus contributing to a variety of constructive and 

destructive processes within the cave environment (Jones, 2001; Warren and Kauffman, 2003; Engel et 

al., 2004; Barton and Luiszer, 2005; Taboroši, 2006). 

 Caves represent a transition zone between the surface and subsurface environment (Pedersen, 

2000). Much like the deep sea, cave zonation is defined by the extent to which light and surface 

conditions penetrate: (1) an entrance zone, close to the mouth of the cave and subject to surface 

conditions, (2) the twilight zone, a zone of transition, and (3) the deep zone, characterized by 

environmental stability with an absence of light, constant year-round temperature, and high humidity 

(Northup and Lavoie, 2001). The cave environment has long been recognized as unique milieu in which 

natural selection can exert its powerful forces (Poulson and White, 1969). Strong selective pressures have 

led to the evolution of endemic cave macrofauna (Porter, 2007), including a variety of troglophilic and 

troglobitic species with unique phenotypes such as lack of eyes and pigmentation, unique extrasensory 

organs, lengthened appendages, and slender body forms (Poulson and White, 1969; Engel, 2007; Fong, 

2011) that are useful in the subterranean realm. Macrofaunal diversity in caves has been linked to cave 

systems with a high degree of either autochthonous energy production (e.g., chemolithoautotrophy) or 

allocthonous energy input (e.g., intersection with the phreatic zone, surface input) and larger cave systems 

with an increase in habitat availability (Culver and Sket, 2000). Caves also contain a diverse cave 

microflora (Barton and Jurado, 2007; Engel, 2007), which is known to vary in composition as a result of 

abiotic conditions (e.g., pH, nutrient availability, niche formation) within a cave system (Engel et al., 

2003; Barton and Luiszer, 2005; Macalady et al., 2006; Barton et al., 2007; Macalady et al., 2007; 

Macalady et al., 2008; Engel et al., 2010). 

 Within the continental United States, there are five major cave regions (Christman and Culver, 

2001) all located in karstified regions: the Florida Lime Sinks, the central and southern Appalachians 

(parts of West Virginia, Virginia, Tennessee, Georgia, and Alabama), the Interior Low Plateau (parts of 
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Illinois, Indiana, Kentucky, Tennessee, and Alabama), the Ozarks (parts of Missouri, Oklahoma, and 

Arkansas), and the Balcones Escarpment and Edwards Plateau (parts of Texas). Of these five regions, the 

Appalachians (Christman and Culver, 2001), and specifically the state of Tennessee (Barton and Jurado, 

2007), represent one of the most cave-dense terrains in the continental United States. Despite the 

abundance of cave systems in the Appalachians, relatively little is known regarding the organisms that 

inhabit the subterranean realm therein.  

    A handful of studies have addressed the macrofaunal composition of Appalachian cave systems. 

Two recent surveys have elucidated macrofaunal community composition in caves within the Tennessee-

Georgia-Alabama region (Campbell et al., 2011b; Dixon and Zigler, 2011). In general, cave macrofauna 

exhibit a suite of characteristics that increase their vulnerability to disturbance (Fong, 2011; Humphreys, 

2011). Due to the stability of the cave environment, anthropogenic impact and disturbance regimes have a 

quick and detrimental impact on cave communities (Fong, 2011; Gillieson, 2011; Humphreys, 2011; 

Northup, 2011). Anthropogenic related disturbance in cave environments is documented within the 

Appalachian region: (1) changes in cave macroinvertebrate populations in response to organic pollution 

events in Banners Corner Cave (Virginia) resulted in the elimination of sensitive species from highly 

degraded environments (Simon and Buikema Jr., 1997), and (2) the devastating impact of Geomyces 

destructants (Gargas et al., 2009), the fungal species that is the reported cause of bat white nose syndrome 

and whose dispersion is thought to be partially linked to human traffic in cave systems, has resulted in the 

conversion of some cave systems into bat gravesites (Blehert et al., 2011).   

 In addition, relatively little is known about the microbial communities of Appalachian caves. 

Relevant studies include a single assessment of fungal ecology in caves of Kentucky and Tennessee 

(Shapiro and Pringle, 2010), an examination of the role of stream biofilms in cave ecosystem energetics 

(Simon et al., 2003), molecular characterizations of microbial mats in cave systems formed by sulfuric 

acid speleogenesis (Angert et al., 1998; Engel et al., 2001), and documentation of fecal coliforms in cave 

systems within Northern Georgia and Alabama (Campbell et al., 2011a). However, none of these studies 

has addressed the geomicrobiology of a southern Appalachian cave system generated by carbonic acid 
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speleogenesis, the primary method of speleogenesis in karst systems worldwide (White et al., 1995). The 

contents of this thesis represent the first analyses of the geomicrobiology of epigenic cave systems in the 

southern Appalachians, a cave-rich but vastly understudied region within the United States. 
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CHAPTER 2: MN(II)-OXIDIZING BACTERIA ARE ABUNDANT AND ENVIRONMENTALLY 

RELEVANT MEMBERS OF FERROMANGANESE DEPOSITS IN CAVES OF THE UPPER 

TENNESSEE RIVER BASIN  

Summary 

 

Ferromanganese deposits in the karst network of the upper Tennessee River Basin were examined 

using culture-dependent and independent techniques to determine the role of microbes in 

biogeochemical cycling of manganese and in the formation/transformation of cave mineralogy. 

Mn:Fe ratios, measured using ICP-OES, ranged from ca. 0.1 to 1.0 in Mn and Fe oxide-rich 

biofilms and mineral crusts from several different caves. At sites where the Mn:Fe ratio 

approached 1.0 this represents an order of magnitude increase above the bulk bedrock ratio, 

suggesting that biomineralization processes play an important role in these subsurface karst 

systems. Estimates of total bacterial SSU rRNA genes in ferromanganese biofilms measured 

approximately 9x109 cells/g wet weight sample, a number that was confirmed via direct cell counts. 

A SSU rRNA based molecular survey of Mn Falls biofilm material revealed that 21% of the 34 

dominant OTUs were closely related to known metal-oxidizing bacteria or clones isolated from 

oxidized metal deposits. Several isolates that promote the oxidation of Mn(II) compounds were 

obtained in this study, some from high dilutions (10-8-10-10) of cave biofilm material. SSU rRNA 

sequences of several of these Mn-oxidizing bacterial isolates most closely matched those of 

Pseudomonas, Leptothrix, Flavobacterium, and one species not previously known to oxidize Mn, 

Janthinobacterium. Combined data from geochemical analyses, molecular surveys, and culture-

based experiments suggest that Mn(II)-oxidizing bacteria are abundant and environmentally 
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relevant members of ferromanganese deposits in the karst network of the upper Tennessee River 

Basin.  

 

 

Introduction 

 

Carbonate bedrock underlies 20% of the land area east of the Mississippi River (White et al., 1995; 

Christman and Culver, 2001), forming an intricate karst hydrologic network that is riddled with caves. 

The southern Appalachians (e.g., West Virginia, Virginia, Tennessee, North Carolina, South Carolina, 

Georgia, and Alabama) contain numerous caves. Of the 50,000 cave systems known to exist in the United 

States, ca. 14% occur within the state of Tennessee (Barton and Jurado, 2007). Although cave 

geomicrobiology is an emerging field with recent studies involving caves in the southwestern United 

States and Europe (Northup et al., 2003; Barton et al., 2004; Porter et al., 2009; Jones et al., 2011), a 

paucity of information exists concerning the numerous cave systems of the Appalachian region.  

 To date, only a few studies describe the microbial communities of Appalachian cave systems. 

These include an assessment of fungal microbial ecology (Shapiro and Pringle, 2010), an examination of 

the role of stream biofilms in controlling cave ecosystem energetics (Simon et al., 2003), molecular 

characterizations of microbial mats located in hypogene cave systems formed by sulfuric acid 

speleogenesis (Angert et al., 1998; Engel et al., 2001), and documentation of fecal coliforms in cave 

systems within Northern Alabama and Georgia (Campbell et al., 2011). To our knowledge, our study 

represents the first characterization of the geomicrobiology of southern Appalachian cave systems created 

by the process of carbonic acid speleogenesis, the primary method of speleogenesis in karst systems 

worldwide (White et al., 1995). 

 In past decades, the formation of cave mineral deposits and speleothems was thought to be 

primarily controlled by abiotic processes as a result of microsite environmental conditions (e.g., 

temperature, pH, solution chemistry), and changes in redox conditions (Northup and Lavoie, 2001; Engel 
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et al., 2004a; Barton and Northup, 2007). However, more recent geomicrobiology research lends support 

to the hypothesis that microbes play a role in the formation and dissolution of cave mineral deposits via 

direct and indirect metabolic activities and biomineralization processes (Northup et al., 1997; Jones, 

2001; Melim et al., 2001; Barton and Luiszer, 2005; Spilde et al., 2005; Cañaveras et al., 2006; Taboroši, 

2006; de los Ríos et al., 2011). In particular, microbial reactions have been shown to promote the 

formation of cave manganese oxide and ferromanganese (mixed Fe and Mn oxides) deposits, such as 

corrosion residues (Northup et al., 2000; Northup et al., 2003; Spilde et al., 2005), manganese flowstones 

(Gradziński et al., 1995), rock coatings (Peck, 1986; Allouc and Harmelin, 2001), and manganese 

stromatolites (Rossi et al., 2010). 

 These cave ferromanganese deposits may contain Mn oxide, Mn hydroxide, and Mn 

oxyhydroxide minerals (collectively referred to hereafter as Mn oxides), and the mineralogy of these 

deposits can be quite complex (Post, 1999; White et al., 2009; Onac and Forti, 2011). The oxidation of 

Mn(II) to Mn(III) or Mn(IV), which is largely insoluble and precipitates out of solution as Mn(III/IV) 

oxide,  is kinetically inhibited in the absence of a catalyst at near-neutral pH of most environments. 

Microorganisms are known to catalyze the oxidation of Mn(II) compounds, increasing reaction rates up to 

five orders of magnitude relative to abiotic oxidation rates (Nealson et al., 1988; Dixon and Skinner, 

1992; Francis and Tebo, 2002). Therefore, rapid Mn(III/IV) oxide depositional rates, especially those 

which exceed predicted abiotic reaction rates in a given environment, are a strong indication of microbial 

involvement in deposit formation (Nealson et al., 1988).  

 The ability to oxidize Mn is a widespread trait among bacterial phylogenies, as members of the 

Alphaproteobacteria (Gebers and Hirsch, 1978; Anderson et al., 2009), Betaproteobacteria (Emerson and 

Ghiorse, 1992), Gammaproteobacteria (Geszvain and Tebo, 2010), CFB (Nealson, 1978; Santelli et al., 

2010), and gram-positive (Dick et al., 2006) lineages have demonstrated the ability to oxidize Mn. Fungal 

species are also capable of Mn biomineralization (Miyata et al., 2006; Cahyani et al., 2009; Santelli et al., 

2010; Santelli et al., 2011). In most cases, the exact mechanism through which microbes induce the 

formation of Mn oxides remains enigmatic (Tebo et al., 2005). However a few studies provide insight 
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into the complex biochemical pathways involved in Mn biomineralization, and it is generally recognized 

that microbial precipitation of Mn oxide minerals can be the result of passive (biologically-induced) or 

active (biologically-controlled) processes (Ghiorse and Ehrlich, 1992; Skinner and Fitzpatrick, 1992). In 

many cases, Mn-oxidation is either directly (Adams and Ghiorse, 1987; Boogerd and de Vrind, 1987) or 

indirectly (Learman et al., 2011a) catalyzed by enzymes, and can occur via mechanisms that are 

associated with the structure of the microbial cell (e.g., membrane, sheath, or spore coat) (Boogerd and de 

Vrind, 1987; Larsen et al., 1999; Francis and Tebo, 2002; Dick et al., 2006) or via extracellular secretion 

of Mn-oxidases (Geszvain and Tebo, 2010; Santelli et al., 2011). Therefore, biogenic oxides can either 

encrust microbial cells or accumulate in the immediate extracellular environment. 

 Regardless of their origin, Mn oxide minerals have highly charged surfaces and are 

biogeochemically active, demonstrating the ability to degrade humic substances (Sunda and Kieber, 

1994), scavenge reactive oxygen species (Archibald and Fridovich, 1981; Daly et al., 2004; Ghosal et al., 

2005; Learman et al., 2011a), concentrate rare earth elements (Onac et al., 1997), and influence trace 

metal (e.g., Co, Ni, Pb, Zn) bioavailability (Nelson et al., 1999a,b; Post, 1999; Kay et al., 2001; Manceau 

et al., 2002; Villalobos et al., 2005; Toner et al., 2006) and speciation (Fendorf and Zasoski, 1992; White 

et al., 2009). Biogenic oxides, which tend to have higher percentages of vacancies and smaller particle 

sizes (Webb et al., 2005; Learman et al., 2011b), demonstrate an increased sorptive capacity relative to 

abiotically produced oxides (Nelson et al., 1999a). Therefore, biogenic Mn oxides may exert a greater 

impact on local geochemistry than abiotically generated deposits. 

  In this study, we examine the geomicrobiology of ferromanganese deposits in a cave system 

generated through carbonic acid speleogenesis, located in the cave-rich but poorly studied southern 

Appalachian karst region. The primary goal of this study is to better elucidate the role of microorganisms 

in the formation of cave ferromanganese deposits. Using a combination of molecular-based SSU rRNA 

analysis and culture-based methodologies, we demonstrate that Mn(II)-oxidizing bacteria are abundant 

and environmentally relevant constituents of ferromanganese deposits within cave systems of the upper 

Tennessee River Basin.  
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Results 

 

Geochemistry and biogeochemical analyses 

A variety of carbonate speleothem formations (flowstone, dripstone, soda straws, corrosion residue) occur 

throughout the cave systems in the upper Tennessee River Basin addressed in this study.  All four cave 

systems (Carter Salt Peter Cave (herein CSPC), Worley’s, Rockhouse, and Daniel Boone Caverns (herein 

DBC)) are particularly enriched in ferromanganese oxide deposits (Fig. S1), which are visible in the form 

of black or chocolate brown biofilms and mineral-rich crusts that coat cave walls and speleothems. The 

source of Fe(II) and Mn(II) necessary for the formation of these deposits is likely the Knox Dolomite 

bedrock, which contains ca. 88-445 ppm Mn and ca. 1340-7050 ppm Fe (Montañez, 1994). Studies in 

similar cave systems also indicate a bedrock source for these reduced compounds (Rossi et al., 2010), or 

an aqueous source via groundwater percolation (Moore, 1981). 

 Weathering and corrosion of the Knox Dolomite bedrock by infiltration of meteoric water 

containing carbonic acid produces a nontronite (smectite-type) clay residuum in addition to calcite 

speleothems in all four study sites, including flowstones, rimstones, and popcorn-like micronodules (cave 

coral). We observe ferromanganese crusts and/or biofilms occurring on these nontronite substrates, on 

weathered dolostone bedrock, and on calcite speleothems at all four field locations.  Geochemical 

analyses show that the concentration of total Mn in these crusts and biofilms ranges from 10.9 ppm – 

327.5 ppm (Table 1). The Mn:Fe ratios in cave ferromanganese deposits vary between cave systems and 

within cave deposits, ranging from 0.06 -1.07 (Table 1). However, no obvious trends have emerged that 

indicate a possible effect of substrate mineralogy or water content on Mn:Fe ratios in these deposits. For 

example, samples taken from different locations with similar substrate compositions in Carter Salt Peter 

Cave show both the second highest (0.91) and lowest (0.06) Mn:Fe ratios. Interestingly, the Mn:Fe ratio 

at all sample sites, with the exception of CSPC Watermark (Table 1), was enriched relative to the average 

Mn:Fe ratio for Knox Dolomite (ca. 0.1) as reported by Lumsden and Caudle (2001). At sites where the 
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Mn:Fe ratio approaches 1 (Worley’s Ribbon Rock and CSPC Mn Falls), this would represent an order of 

magnitude increase above the bulk bedrock ratio.      

 

Quantification of microbial abundance using real-time quantitative PCR and fluorescence direct counts 

Our qPCR results (Fig. 2) demonstrated that total bacterial SSU rRNA genes in biofilm samples from Mn 

Falls and Mud Trap Falls (CSPC) represented approximately 9x109 cells/g wet weight, a number that was 

confirmed via fluorescence direct cell counts (Fig. S2). Total bacterial SSU rRNA genes from 

ferromanganese crusts (Fig. 2) were up to two orders of magnitude lower, containing from 7x107 

(Weathered Ribbon Rock, Worley’s Cave)-2x109 (Hang Out, Rockhouse Cave) cells/g wet weight 

(3x108-4x1010 SSU rRNA gene copies/g wet weight). Archaeal SSU rRNA gene sequences from cave 

samples were estimated to represent from 5x106-1x108 cells/g wet weight (8x106-2x108 SSU rRNA gene 

copies/g wet weight), with an average of 5.6x107 cells/g wet weight in biofilm samples. Archaeal 

percentages within the total microbial population were highest at several sample sites within the CSPC 

and Worley’s cave systems: Dino Cove (ca. 6%), Ribbon Rock (ca. 6%), Watermark (ca. 7%), and 

Weathered Ribbon Rock (ca. 11%). The total estimated number of fungal ITS gene sequences from cave 

samples ranged from below detection limit (257-4,945 cells/g wet weight depending on the DNA 

extraction efficiency of individual samples) to 6.5x107 cells/g wet weight (1x1010 SSU rRNA gene 

copies/g wet weight) in biofilm samples, with an average of 1.32x107 cells/g wet weight across all sample 

sites above detection limit. Overall, bacterial SSU rRNA gene copies represented 95% (89-99%) of the 

total estimated microbial cell numbers at each site, while those of archaea represented 5% (0.2%-11%), 

and those of fungi represented 0.3% (undetected-0.6%). 

 

Analysis of bacterial and archaeal community structure through SSU rRNA clone library construction 

Molecular based characterization of microbial community structure has been a staple of microbial 

ecology since the recognition that culture-based techniques vastly underestimate prokaryotic diversity 

within the environment (Staley and Konopka, 1985). PCR and cloning techniques are inherently biased in 
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all steps of the procedure, from DNA extraction (Klein, 2011), to PCR primer choice and reaction 

conditions (v. Wintzingerode et al., 1997), to the statistical techniques used to analyze data (Kuczynski et 

al., 2010; Kuczynski and Knight, 2011). In addition, concern also exists regarding sequencing depth of 

coverage when using small clone libraries, a factor that would lead to an underestimation of true 

environmental diversity and the exclusion of rare taxa in sequencing data (Fierer and Lennon, 2011). 

With the advent of second generation sequencing technologies, this concern is becoming less of an issue 

(Wooley et al., 2010; Jones et al., 2011). Despite the issues outlined above, 16S rRNA gene sequencing 

has been a reliable and accurate way of characterizing microbial community structure since its 

incorporation into the field of microbial ecology (Pace, 1997). In this study, a SSU rRNA clone library 

survey was conducted on two ferromanganese-rich biofilms (Table 1) located in close physical proximity 

within the CSPC system, Mn Falls (Fig. S1A, OTUs from this sample are prefaced by a F in Fig. 3 and 

Fig. 4) and Mud Trap Falls (Fig.S1B, OTUs from this sample are prefaced by a T in Fig. 3 and Fig. 4). 

The primary goal of the molecular survey was to characterize the microbes in cave ferromanganese 

deposits and to infer which microorganisms may be playing a role in Mn oxidation in situ, based on 

phylogenetic association and/or culturing analyses.  

 Using 98% sequence similarity to define archaeal operational taxonomic units (OTUs), analysis 

of archaeal libraries revealed 26 unique OTUs out of 65 total sequences. Rarefaction analysis of 

sequencing data indicated the development of an asymptotic trend (data not shown); therefore, sampling 

efforts were sufficient in capturing the archaeal diversity within the microbial community. Crenarchaeal 

sequences were binned into 3 operational taxonomic units (OTUs/species) (Fig. 3), representing ca. 40% 

of the total archaeal sequences in cave biofilm clone libraries. According to top BLAST hits, these OTUs 

were related to clone sequences from a variety of environments, from sediment, to the deep subsurface, 

freshwater systems, and other ferromanganese deposits. Crenarchaeal OTUs represented members of the 

Marine Group 1 Crenarchaea and SAGMA Groups 1 and 2. The dominant Crenarchaeal sequence in the 

present study was OTU TDO2, sharing 98% identity over a 765 bp alignment to a clone sequence isolated 

from freshwater ferromanganous micronodules and sediments (Stein et al., 2001). Euryarchaeal 
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sequences from clone libraries were binned into 23 OTUs (Fig. 4), representing ca. 60% of the total 

archaeal sequences in the clone library data. OTUs represented members of the Deep Sea Hydrothermal 

Vent Group 6, Rice Cluster V, and Methanobacteriales and were closely related to other clones isolated 

from soil, freshwater and marine systems, and low-temperature environments. The majority of 

Euryarchaeal OTUs in this study represented members of Rice Cluster V. Members of the Deep Sea 

Hydrothermal Vent Group 6 (DSHV6) represented 29% of the total archaeal sequence types in cave 

biofilm clone libraries, and 45% of the Euryarchaeal sequences. OTU FG01, a member of the 

Methanobacteriales and representing 6% of the total archaeal sequences, shared 100% identity over a 765 

bp alignment to Methanobrevibacter acididurans, a novel acid-tolerant, hydrogenotrophic methanogen 

isolated from an anaerobic digester (Savant et al., 2002). 

 Bacterial community composition in the CSPC system was much more diverse than archaeal 

community composition, a pattern that is consistent with most environmental surveys, including caves 

(Northup et al., 2003; Chelius and Moore, 2004; Macalady et al., 2006; Macalady et al., 2007). Using a 

97% identity cutoff, there were 114 unique OTUs out of ca. 180 total sequences. Rarefaction analysis 

revealed no evidence of the development of asymptotic trend (data not shown), indicating that sampling 

efforts were not sufficient to measure the full extent of diversity within the biofilm communities. This 

type of depth of coverage issue is not uncommon in 16S rRNA sequence-based environmental studies 

using small clone libraries (Fierer and Lennon, 2011). For phylogenetic analysis, data was further reduced 

into 34 dominant OTUs representing ca. 100 sequences (Fig. 5, Fig. 6, and Fig. S3). A dominant OTU 

was defined as representing two or more sequences in the clone library, and it is important to note that 

this approach would result in an underestimation of diversity in the clone library as ca. 80 singleton OTUs 

were eliminated from downstream phylogenetic analysis.  

 Dominant bacterial OTUs from cave biofilms represented a diverse taxonomic array, with 

sequences from the library representing members of the Bacteroidetes (26%), Betaproteobacteria (20%), 

Alphaproteobacteria (15%), Acidobacteria (12%), Gammaproteobacteria (10%), Verrucomicrobia (7%), 

Planctomycetes (5%), Chlorobi (2%), and Deltaproteobacteria (2%). The three dominant classes of 
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bacteria, based on the percentage of sequences represented by dominant OTUs in the library, were 

members of the Proteobacteria (47%), Bacteroidetes (26%), and Acidobacteria (12%). Combined, these 

three phyla account for 85% of the dominant OTUs.  

 Several dominant bacterial OTUs identified in this study were related to clones and 

environmental isolates from freshwater and marine systems, sediment, contaminated ecosystems, other 

cave systems, and ferromanganese deposits. Some (ca. 10%) of the 34 dominant OTUs were related to 

known Mn-oxidizers such as Leptothrix (OTU BF2AO7, Fig. 5, 100% identical over a 1,485 bp 

alignment to Leptothrix discophora SP-6 (Emerson and Ghiorse, 1992)) and Pseudomonas (OTUs 

BF2B07 and BF2E03, Fig. 5). In addition, some (ca. 11%) of the 34 dominant OTUs were related to 

known Fe-oxidizers (Leptothrix spp.) or clones isolated from oxidized iron deposits (OTUs BF2C07 and 

BF2C10, Fig. S3). Combined, 21% of the sequences represented by dominant OTUs were related to 

known metal-oxidizers or clones isolated from oxidized metal environments.  

 

Isolation of Mn(II)-oxidizing microorganisms 

Six Mn(II)-oxidizing isolates obtained from CSPC ferromanganese deposits clustered within the 

Gammaproteobacterial subphylum near members of the genus Pseudomonas, a common group of known 

Mn(II)-oxidizing microorganisms (Fig. 5). Cultures N4, T4, T2, and N3 were isolated on a modified 

version of Burk’s N-free media (Mohandas, 1988), although we have not yet established if these isolates 

are capable of N2 fixation. Isolate N3 is 97% identical over a 1,502 bp alignment to OTU BF2E03, and 

isolates N4 and T4 are 97% identical (over a 1,181 and 1,473 bp alignment respectively) to OTU 

BF2B07. Isolate Mn Falls 11 is a close relative (99% identity over a 1,128 bp sequence alignment) of 

Pseudomonas putida, a model organism used in the study of the molecular mechanisms involved in 

Mn(II)-oxidation (Geszvain and Tebo, 2010).  

 Two Mn(II)-oxidizing isolates obtained from ferromanganese deposits within CSPC fall within 

the Betaproteobacteria (Fig. 5): Janthinobacterium sp. A6 and Leptothrix sp. G6. Janthinobacterium sp. 

A6 oxidizes Mn(II) in liquid culture, and appears to oxidize Mn extracellularly, since clumps of tissue-
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paper like Mn oxides were loosely associated with cells (Fig 7). The closest cultured strain, 

Janthinobacterium sp. Acj215 (Fig. 5), isolated from the gut of a Japanese honeybee, is 99% identical to 

isolate A6 across a 1,123 base pair alignment. Isolate A6 was obtained from a serial dilution culture 

containing 2.5x10-8g wet weight biofilm material. Cave isolate Leptothrix sp. G6 oxidizes Mn along the 

sheath (Fig 7). This organism is 99% identical over a 1,485 bp alignment to the Mn-oxidizing, sheath-

forming Leptothrix discophora SP-6 (Emerson and Ghiorse, 1992), and it was obtained from a serial 

dilution culture containing 2.5x10-8 g wet weight biofilm material.  

 Two Mn(II)-oxidizing isolates obtained from ferromanganese deposits within CSPC fall within 

the Bacteroidetes (Fig. 6): Flavobacterium sp. E8 and Flavobacterium sp. MTFA, which oxidize Mn(II) 

in liquid culture. Flavobacterium sp. E8 is 99% identical over a 1,469 bp alignment to its’ closest 

cultivate relative, Flavobacterium sp. WB3.4.6, and Flavobacterium sp. MTFA is 98% identical over a 

1,476 bp alignment to its’ closest cultivate relative, Flavobacterium sp. PR4-11. Members of this genus 

have previously been reported to oxidize Mn(II) (Nealson, 1978; Ford and Mitchell, 1990; Santelli et al., 

2010). Isolate E8 was obtained from a serial dilution culture containing 2.5x10-10g wet weight biofilm 

material.  

 A single isolate falling within the Actinobacteria, Arthrobacter sp. L (Fig. 6), was obtained from 

a ferromanganese deposit located within Daniel Boone Caverns. Arthrobacter isolate L oxidizes Mn(II) in 

liquid culture; members of this genus have been reported to demonstrate this capability (Schweisfurth et 

al., 1978). Arthrobacter sp. L is 98% identical over a 1,457 bp alignment to its’ closest cultivated relative, 

Arthrobacter methylotrophus, a facultative methylotroph isolated from an enrichment culture containing 

dimethylsulfone as the sole source of carbon and energy (Borodina et al., 2000; Borodina et al., 2002). 

Interestingly, in addition to Mn(II)-oxidizing microorganisms, two putative methylotrophic Mn(II)-

oxidizers were isolated in this study: a Gammaproteobacterium, Acinetobacter sp. V1 (Fig. 5), and a 

Bacteroidete, Flavobacterium sp. V2 (Fig. 6). Both isolates were obtained using NMS media, which was 

designed to target methylotrophic Mn oxidizers by using methane as a sole carbon source. However, 

methylotrophy has not yet been confirmed in these strains. 
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Discussion 

 

The cave geochemical environment 

Iron and manganese are the fourth and fifth most abundant elements in the Earth’s crust, respectively 

(Edwards et al., 2004; Tebo et al., 2007), where Fe outweighs Mn by a ratio of ca. 58:1 in the upper 

continental crust (Turekian and Wedelpohl, 1961; Wedelpohl, 1995). The predominance of Fe over Mn in 

a variety of natural systems is well documented in studies of marine (Edwards et al., 2004; Nitahara et al., 

2011) and freshwater (Stein et al., 2001; Johnson et al., 2012) systems. However, biomineralization 

processes are invoked as a causal factor in the formation of a Mn-enriched geochemical environments in 

cases where the concentration of Mn is equal to or outweighs the concentration of Fe (e.g., Mn flowstones 

in caves (Gradziński et al., 1995) and desert rock varnish (Krumbein and Jens, 1981)) or where secondary 

mineral deposits are enriched in metal concentration relative to substrate geochemistry as is common in 

many caves throughout the world (Cunningham et al., 1995; Northup et al., 2003; Spilde et al., 2005; 

Spilde et al., 2006). 

 Microbial biomineralization processes clearly contribute to ferromanganese oxide accretion in 

this study, where Mn concentrations were enriched relative to bedrock concentrations and where the 

Mn:Fe ratio approached 1:1, such as Worley’s Ribbon Rock and CSPC Mn Falls (Table 1). A Mn:Fe ratio 

of ca. 1:1 in cave ferromanganese deposits is a common ratio found in oligotrophic systems in the 

southwest United States such as Lechuguilla and Spider Caves (Northup et al., 2003; Spilde et al., 2005), 

whereby darker deposits tend to show an enrichment in Mn relative to lighter deposits (Northup et al., 

2003; Spilde et al., 2006). In the present study, geochemical analyses indicated that niches, with varying 

degrees of Fe and Mn enrichment, were forming within cave systems of the upper Tennessee River Basin. 

Previous research demonstrates the role of microsite geochemistry in establishing environmental niches 

(Macalady et al., 2008; Engel et al., 2010; Rossmassler et al., 2012), structuring microbial communities 

(Goldscheider et al., 2006; Barton et al., 2007; Shabarova and Pernthaler, 2010), and influencing mineral 
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precipitation (Frierdich et al., 2011) and composition (Post, 1999; White et al., 2009) in subsurface karst 

systems. Enrichment of Mn relative to Fe at some sample locations, such as CSPC Mn Falls (Table 1, Fig. 

S1A), emphasizes the importance of understanding the role of Mn-oxidizing and Mn-reducing 

microorganisms at these sites, as microbial biomineralization and dissolution processes contribute to the 

formation and transformation of the cave mineral environment. However, the effects of agricultural and 

soil geochemical inputs on biomineralization processes in the shallow, epigenic cave systems in the upper 

Tennessee River Basin is not yet known.     

 

Ferromanganous biofilm community composition 

In the present study, qPCR data indicated that bacterial cells represented on average 95% of the total 

microbial cells at sample sites, a finding that is consistent with general thought regarding the abundance 

of bacteria (90% of the total cell count including archaea and eukarya) in environmental samples. 

Interestingly, the range of detection of bacterial cell numbers in our study (7.5x107 to 9.8x109 cells/mL) 

was two to four orders of magnitude higher than numbers typically reported within similar, pH neutral 

cave systems (Northup et al., 2000; Barton et al., 2006). In addition, biofilm samples were estimated to 

contain 9.85x109 total microbial cells/g wet weight, a quantity that is two orders of magnitude greater 

than studies of ferromanganese deposits in Spider and Lechuguilla caves (Spilde et al., 2005). Deep cave 

systems with limited energy supply and minimal human impact are considered to be oligotrophic 

environments, and recent research indicates that they are low-biomass environments with high levels of 

microbial diversity (Northup and Lavoie, 2001; Barton et al., 2004; Hunter et al., 2004; Boston et al., 

2006). Although the total cell count reported in the present study is higher than that found in oligotrophic 

caves, it is not outside the range of numbers reported in studies of other environmental systems. Microbial 

cell abundance has been estimated to range from 1.29x109 to 7.6x1010 cells/mL in marine sediments 

(Nitahara et al., 2011), cold seep microbial mats (Grünke et al., 2011), arable soil (Torsvik et al., 2002), 

and filamentous microbial mats in sulfidic springs (Engel et al., 2004b). At the time of sampling, the 

CSPC Mn Falls site was thought to be heavily impacted by organic input from sewage effluent. Bacterial 
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biomass in cave pools has been shown to increase proportionally with organic carbon input (Simon and 

Buikema Jr., 1997), and cell concentrations in the range of 1x109 cells/mL have been reported in sewage 

(Fierer and Lennon, 2011). Therefore, high cell counts at sites within the CSPC system could be 

indicative of high levels of anthropogenic impact (e.g., nutrient loading), due in part to the shallow, 

surface-influenced depths of these caves. In fact, clone library data corroborate this idea as many of the 

clones obtained here were related to sequences obtained from degraded environments (see Fig. 5, OTUs 

BF2B07, BF2E04, BF2F03, BLD10, and BLB01).   

 In general, a high degree of diversity within systems is supported by microbial metabolic 

plasticity (Whitman et al., 1998) and the development of mutualistic associations in biofilm communities 

leading to the interdependency of organisms within the community (Fierer and Lennon, 2011). The SSU 

rRNA data from the present study is suggestive of the presence of a variety of microbial metabolic 

strategies within CSPC biofilms, as clone sequences obtained in this study are closely related to 

methanogens (OTU G01, Fig. 4), hydrocarbon degraders (OTU BF2E03, Fig. 5), ammonia-oxidizers 

(OTU BF2F03, Fig. 5), denitrifiers (OTU BLB01, Fig. 5), and iron or manganese-oxidizers. Several lines 

of evidence from the SSU rRNA molecular-based survey of CSPC suggest that metal-oxidation plays an 

important role in the formation of ferromanganous biofilms within the cave system.  

 Members of the Proteobacteria (47% of the sequences represented by dominant OTUs in the 

present study) are common constituents of cave clone libraries and have been detected in RNA-based 

surveys as metabolically active members of cave microbial consortia (Portillo et al., 2008). Members of 

the Bacteroidetes (26% of the sequences represented by dominant OTUs in the present study) have been 

detected in both pH neutral (Schabereiter-Gurtner et al., 2002b; Chelius and Moore, 2004) and sulfidic 

(Engel et al., 2001; Barton and Luiszer, 2005) cave systems. Molecular work from the present study 

indicates that Leptothrix are dominant members of the CSPC Mn Falls biofilm community, with 6% of 

the total library sequences represented by OTU BF2A07 (Fig. 5), a close relative (99% identity over a 

1,489 bp sequence alignment) of the Leptothrix strain isolated in this study suggesting that these 

organisms play an important role in the biomineralization of Mn in southern Appalachian cave systems. 
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Leptothrix sp. are known to be capable of both Fe and Mn oxidation (van Veen et al. 1978; Spring, 2006) 

therefore we cannot rule out the role of microbially induced Fe oxidation by Leptothrix and other related 

organisms in the formation of cave ferromanganese biofilms and crusts. 

 Of particular interest in the present study, is the relatively high proportion of Acidobacteria (12% 

of the sequences represented by dominant OTUs in the present study) in CSPC biofilms. Members of this 

class have been detected in molecular-based studies of both pH neutral (Schabereiter-Gurtner et al., 

2002a, b; Chelius and Moore, 2004; Schabereiter-Gurtner et al., 2004; Northup et al., 2011) and sulfidic 

(Engel et al., 2004b) cave systems. Acidobacteria are known to be recalcitrant to cultivation (Stevenson et 

al., 2004), therefore information concerning their physiological role in the environment is lacking. 

Evidence from several studies indicates that Acidobacteria may be important metabolically active 

members of cave microbial consortia (Meisinger et al., 2007; Portillo et al., 2008). However, further 

research is needed to determine if members of the Acidobacteria play a role in cave biomineralization 

processes. One of the few isolated Acidobacteria cultivars, Geothrix fermentans (Coates et al., 1999), is a 

known Fe(III)-reducer, suggesting the potential for these organisms to be involved in the reductive 

dissolution of cave ferromanganese deposits. Interestingly, OTU BF2C10 (Fig. S3), closely related to 

other clones isolated from freshwater ferromanganese deposits (Stein et al., 2001) and iron-oxidizing 

biofilms (Duckworth et al., 2007), shares 100% identity over a ca. 1500 base pair alignment with 

Geothrix fermentans. Overall, results suggest that many of these organisms (among the Acidobacteria, 

Proteobacteria and Bacteroides) may be responsible for, or at least involved in the transformation 

(precipitation or dissolution) of cave ferromanganese deposits. 

 The identification of clones related to organismal or clonal sequences from a variety of oxidized 

metal environments corroborates studies of ferromanganese deposits in caves and other systems (Stein et 

al., 2001; Northup et al., 2003; Spilde et al., 2005). In the present study, these sequences represented 21% 

of the total dominant OTUs, suggesting that metal-oxidizers are abundant members of the CSPC biofilm 

communities and contribute to the formation of ferromanganese deposits. Horner-Devine et al. (2007) 

demonstrated that a certain degree of structure occurs within microbial communities, as species 
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assemblages exist in non-random patterns that can be dictated by environmental conditions. Therefore, 

the observed enrichment of metal-oxidizing organisms in the present study is unlikely to represent a 

stochastic fluctuation in community structure, and is likely related to the Fe and Mn geochemistry at these 

sites.  

 Archaea, like bacteria, are ubiquitous within the environment (DeLong, 1992), and play a key 

role in the maintenance of biogeochemical cycles (Goldscheider et al., 2006). Despite the widespread 

distribution of archaea in the environment (Chaban et al., 2006) and the known metabolic diversity of 

cultured representatives, archaea remain understudied members of microbial communities, particularly in 

caves. The role of archaea in the formation and transformation of cave ferromanganese deposits is 

debatable, although molecular evidence of archaea in clone libraries generated from cave ferromanganese 

deposits (Northup et al., 2003) has led some investigators (Tebo et al., 2005) to speculate regarding the 

possible existence of a new class of archaea capable of Mn-biomineralization. 

 In the present study, archaea represented ca. 5.0% of the total microbial population in cave 

biofilms, a finding that is consistent with the general thought regarding the abundance of archaea in 

environmental microbial consortia, typically about 10.0% of the total microbial population. Archaeal 

community diversity was relatively low in comparison to bacterial community diversity; however, this 

trend is consistent with literature reports in caves (Macalady et al., 2007), marine ferromanganese crusts 

(Nitahara et al., 2011), and other environments (DeLong, 1992). 

 Members of the Crenarchaea (Northup et al., 2003; Chelius and Moore, 2004; Spear et al., 2007; 

Llirós et al., 2008; Chen et al., 2009) and the Euryarchaea (Northup et al., 2003; Llirós et al., 2008; Chen 

et al., 2009) have been detected in molecular surveys from caves, subterranean environments, and karst 

systems. The archaeal community in this study was dominated by members of the Marine Group 1 

Crenarchaea. OTU TDO2 accounted for 37% of the total archaeal diversity in the library, and 92% of the 

Crenarchaeal diversity. Members of the Rice Cluster V and Deep Sea Hydrothermal Vent Group 6 

(DSHV6) Euryarchaea were the second and third most dominant archaeal groups, representing 32% and 

29% respectively of the total archaeal diversity captured in this study. Of the six DSHV6 OTUs identified 
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in this study, four (FD02, FF04, TD04, and TD06) were less than 95% similar to their closest relatives as 

determined by BLAST analysis. This high degree of divergence (Amann et al., 1995) indicates that these 

sequences represent novel lineages unique to CSPC or other similar systems. Several findings emphasize 

the need to ascertain the functional role of archaea in cave biogeochemical cycling: 1) the dominance of 

sequences related to Crenarchaeal OTU TD02 in the CSPC Mn(II)-oxidizing biofilm community, 2) 

recent evidence from other studies of metabolically active Crenarchaea in similar cave systems (Gonzalez 

et al., 2006) , and 3) the recovery of several novel Euryarchaeal lineages in CSPC. 

 Fungi, like archaea, are understudied components of cave ecosystems, and little is known about 

the abundance or environmental relevance of fungi in caves (Bastian et al., 2009). By using 169 

copies/fungal genome for our qPCR standardization, it is likely that qPCR measurements of fungal cell 

abundance in the present study underestimate actual abundance within sample sites. Nevertheless, our 

results are generally consistent with what is known about soil microbial communities in that eukaryotic 

cells represent ca. 1.0 % of the total cell population in environmental samples; therefore, fungal:bacterial 

ratios are typically well below 1 (Fierer et al., 2005). However, it is important to note that abundance 

within an environment does not necessarily correlate with environmental relevance. Rare taxa, such as 

fungi, often comprise the majority of microbial diversity in the environment and are thought to be 

important components of the functional diversity of a system (Curtis and Sloan, 2005; Sogin et al., 2006; 

Huber et al., 2007). Further, the maintenance of such diversity is a key component contributing to the 

maintenance of ecosystem stability (Lennon and Jones, 2011). 

 Fungal diversity in cave systems is thought to be high (Roble et al., 2011; Vaughan et al., 2011), 

and the existence of tightly coupled fungal-bacterial interactions (e.g., chemolithoautotrophic bacteria 

providing the organic base to support heterotrophic bacteria and fungi) have been demonstrated in cave 

ferromanganese deposits (Cunningham et al., 1995). Though fungi mediate key biogeochemical 

transformations within the environment regularly (Sterflinger, 2000; Fomina et al., 2005; Dupont et al., 

2007), the extent to which fungi are involved in the formation of ferromanganese deposits is the subject of 

long-standing debate (Taylor-George et al., 1983; Grote and Krumbein, 1992; Schelble et al., 2005). Mn-
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oxidizing fungi represent a phylogenetically diverse group of organisms, yet little is known about the role 

of these organisms in the biogeochemical cycling of manganese (Miyata et al., 2006). The importance of 

fungi as unrecognized constituents of metal-oxidizing communities has recently been highlighted in the 

work of Santelli et al. (2010). The role of fungi in the formation and transformation of the cave mineral 

environment is a relevant and important future line of study within the broader field of cave 

geomicrobiology, and is currently being investigated at these sites.  

 

Microbial Mn-biomineralization in cave ferromanganese deposits 

The present study is significant due to the broad taxonomic array of bacteria isolated from cave 

ferromanganese deposits that demonstrate the ability to oxidize Mn(II) in culture. To our knowledge, the 

isolation of a Janthinobacterium sp. capable Mn(II)-oxidation represents the first report of a Mn(II)-

oxidizing member of this genus. This finding expands the diversity of known Mn-oxidizers and provides 

further support for the importance of this process to the microbial cell. In addition, this study represents 

the first report of Flavobacterium and Arthrobacter strains isolated from a cave that demonstrate Mn-

biomineralization capacity in vitro. Flavobacterium (Ikner et al., 2007) and Arthrobacter (Laiz et al., 

2000; Ikner et al., 2007) species have been isolated from cave systems in prior studies, although the Mn- 

biomineralization capacity of these isolates was not established.   

 In addition to the above strains, the isolation of a Mn(II)-oxidizing Leptothrix from CSPC 

represents the first reported isolation of this organism from a cave in over twenty years (Moore, 1981; 

Peck, 1986), although recent work has demonstrated the presence of Leptothrix in caves using scanning 

electron microscopy (de los Ríos et al., 2011; Florea et al., 2011; Frierdich et al., 2011; S.K. Carmichael, 

unpublished data). Iron and manganese oxidizing Leptothrix sp. are commonly isolated from freshwater 

systems and are particularly abundant at redox interfaces (Spring, 2006). However, Leptothrix sp. 

typically lose their sheath-forming capacity in culture, so isolation of a close relative of the sheath-

forming strain SP-6 from a high dilution is unusual and noteworthy.  
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 Over 30 different metal oxide and hydroxide minerals can be found in caves (Hill and Forti, 

1997), though it is important to note that not all black or dark brown deposits in caves are Mn oxides 

(Hill, 1982; Gázquez et al., 2012) and it is unlikely that all are formed by microbes. However, Mn-

oxidizing microbes have been shown to produce several of the Mn oxide minerals (such as birnessite and 

todorokite) commonly found in caves (Noskin, 2001; Spilde et al., 2005; Santelli et al., 2010; Frierdich et 

al., 2011). The isolation of three Mn(II)-biomineralizing organisms from high dilutions (2.5x10-8 g wet 

weight and 2.5x10-10 g wet weight) is suggestive of the environmental relevance of these genera 

(Janthinobacterium, Leptothrix, and Flavobacterium) in the formation of cave ferromanganese deposits in 

the upper Tennessee River Basin. The diversity of Mn(II)-oxidizers isolated in this study, combined with 

the evidence of biomineralization capacity within cave isolates demonstrates the importance of these 

organisms in cave biogeochemical cycles.  

 

Conclusions 

The present study represents the first geomicrobiological analysis of ferromanganese deposits within the 

cave-rich, yet vastly understudied southern Appalachian karst system. Experimental results better clarify 

the role of microbes in 1) biogeochemical transformations within the Carter Salt Peter Cave system and 2) 

the formation and transformation of the cave mineral environment. Elemental analysis indicates the 

presence of Mn-enriched geochemical environments within some ferromanganese deposits in the CSPC 

system. SSU rRNA based molecular surveys at Mn-enriched sites reveal the genetic potential for Mn-

biomineralization within these deposits. Biomineralization capacity was inferred via culture-dependent 

surveys, which resulted in the isolation of a broad taxonomic array of Mn(II)-oxidizing bacteria from cave 

ferromanganese deposits. Overall, molecular evidence and cultivation-based techniques demonstrate that 

Mn(II)-oxidizing bacteria are abundant and environmentally relevant species in cave ferromanganese 

deposits. Although archaea are also present in these deposits, their contribution to the formation of the 

metal-oxide minerals is not conclusive as cultivation attempts did not succeed in isolating these microbes. 

We cannot rule out the possibility that archaea do not participate in the biogeochemical cycling of metals 
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in this cave environment. The Mn-oxidizing bacteria identified here likely play a role in mediating cave 

biogeochemical cycles, forming and transforming the cave mineral environment, and are vital 

contributors (via functional diversity) to the maintenance of cave microbial consortia (Warren and 

Kauffman, 2003) within these fragile and unique cave systems. However, more work is needed to better 

elucidate the full cycle of metal transformation within the cave environment.  

 

Experimental Procedures 

 

Field Description 

The study area (Fig. 1, inset) is comprised of several epigenic caves, all located in the Ordovician Knox 

Dolomite unit (Oder, 1934) within the upper Tennessee River Basin (spanning northeast Tennessee and 

southwest Virginia).  The primary study site, Carter Salt Peter Cave (Carter County, Tennessee, Fig. 1), is 

an epigenic cave system typical of those found within the Appalachian region. Carter Salt Peter Cave, 

herein referred to as CSPC, is relatively shallow cave system occurring at a depth of approximately 30 m. 

Evidence of anthropogenic impact is widespread throughout the system. Within the dark zone of the cave, 

ambient temperature remains around 13°C year-round and humidity levels approach 100%. These 

conditions are typical of cave systems where temperature in the deep zone annually hovers around MAST 

(Mean Annual Surface Temperature) for a given region (Northup and Lavoie, 2001). Rockhouse Cave is 

located less than 2 km east of CSPC, and the two systems are hydrologically connected (Gao et al., 

2006b; Gao et al., 2006a).  Worley’s cave, located 24 km northeast of CSPC in Sullivan County, TN, is 

frequently visited by humans and contains a substantial subterranean creek system that exits the cave to a 

surface water system. Recent work (Y. Gao, unpublished data) has demonstrated that Worley’s cave is 

hydrologically connected to sinkholes in nearby farm fields and therefore may be susceptible to 

agricultural runoff. In contrast to these three anthropogenically-impacted caves, Daniel Boone Caverns 

(herein referred to as DBC) in Scott County, VA is rarely visited and is located in an isolated forest 

location on the top of a ridge. Therefore, DBC is not subject to agricultural or municipal runoff.  It 
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contains several pools and drip networks, but does not have an extensive subsurface hydrologic system at 

present. 

 

Sample collection 

Samples were collected in roughly three month intervals from July 2009 to September 2011 in four cave 

systems (Fig. 1) located in eastern Tennessee and southwest Virginia: Carter Salt Peter Cave, Daniel 

Boone Caverns, Rockhouse Cave, and Worley’s Cave. Ferromanganese deposits were identified within 

cave systems as black/chocolate brown patinas coating cave rocks and walls. Deposits were screened for 

the presence of Mn oxides using 0.04% Leucoberbelin Blue (LBB), a redox indicator that is oxidized by 

Mn(III) or Mn(IV) to produce a bright blue color change (Krumbein and Altmann, 1973). Deposit 

morphology was highly variable within systems (Fig. S1), with LBB-positive samples collected from 

biofilms, ferromanganese coatings and crusts, and ferromanganous micronodules. Samples were collected 

aseptically by scraping the deposit surface using a sterile 50 mL Falcon tube. Samples were stored on ice, 

transported to the lab, and immediately processed for downstream use. 

 

Geochemistry and biogeochemical analyses 

A subset of cave ferromanganese samples were analyzed at Appalachian State University to determine 

substrate mineralogy (Table 1) using a Shimadzu 6000 powder X-ray diffractometer with a Cu X-ray 

source and measured from 5-80° 2θ. Species were identified using the PDF/4+ Minerals Database. A 

subset of samples were collected for metal analyses in December 2009 (Worley’s Cave) and January 2010 

(Carter Salt Peter Cave), lyophilized over a 48 hour period, then following USEPA SW846 Method 

3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils (Link et al., 1998; 

USEPA, 2007). Elemental analysis was performed in duplicate on several rock and biofilm samples 

(Table 1) to determine total Mn and Fe content using a Varian 710-ES Inductively Coupled Plasma-

Optical Emission Spectrometer (ICP-OES). 
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Real-time quantitative PCR 

Ten sample sites across three cave systems were analyzed using real-time quantitative PCR to quantify 

the relative abundance of archaea, bacteria, and fungi in the Carter Salt Peter, Rockhouse, and Worley’s 

cave systems (Fig. 2). Primers were selected for each domain that demonstrated broad coverage over the 

16S rRNA (archaea and bacteria) and fungal ITS1 regions. The forward primer 338F 5’TCC 

TACGGGAGGCAGCAGT (Nadkarni et al., 2002) was paired with the reverse primer 518R 

5’ATTACCGCGGCTGCTGG (Einen et al., 2008) to target the bacterial 16S rRNA gene sequence. The 

primer pair 967F 5’AATTGGCGGGGGAGCAC/1060R 5’GGCCATGCACCWCCTCTC (Cadillo-

Quiroz et al., 2006) was selected to target the archaeal 16S rRNA gene sequence. The fungal ITS1 gene 

sequence was targeted using the ITS1F 5’TCCGTAGGTGAACCTGCGG/5.8sR 

5’CGCTGCGTTCTTCATCG primer pair (Fierer et al., 2005). Amplifications were performed in 

triplicate on an Applied BiosystemsTM 7300 Real-Time PCR System (Carlsbad, CA) using MaximaTM 

SYBR Green/ROX qPCR Master Mix (Fermentas, Glen Burnie, MA) with 2 ng sample DNA/well. 

Calibration curves for quantification were generated using one of the following standards: 1) plasmid 

DNA containing the SSU rRNA gene from Rhodobacter sp. CR07-74 (bacteria, range of 102–109 target 

copies/µL), 2) genomic DNA extracted using the Qiagen DNeasy Blood and Tissue Kit (Valencia, CA) 

from Methanoregula boonei 6A8 (archaea, range of 102-107 target copies/µL), and 3) plasmid DNA 

containing the fungal ITS1 gene from Saccharomyces cerevisiae (fungi, range of 101-108 target 

copies/µL). Circular plasmid DNA standards have been reported to cause overestimation of sample cell 

number using quantitative PCR (Hou et al., 2010). To circumvent this potential issue, plasmid DNA 

standards were lineraized by restriction digest using BssHII (bacteria) and NCOI-HFTM (fungi) (New 

England BioLabs, Ipswich, MA). rRNA operon copy numbers in microbial cells are variable (Fogel et al., 

1999; Warner, 1999) and change based on environmental conditions (Klappenbach et al., 2000; Anderson 

and Cairney, 2004). Therefore, SSU rRNA gene copy number was normalized in experimental results 

using the average copy number for archaea (1.07 copies/cell) and bacteria (4.08 copies/cell) as reported 

by the Ribosomal RNA Operon Copy Number Database (Klappenbach et al., 2001) in March, 2010. A 
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conservative normalization of fungal copy number was made by standardizing results using the average 

rRNA gene operon copy number (169 copies/cell) for the chytrid Batrachochytrium dendrobatidis 

(Lefèvre et al., 2010), as chytrids are known members of the CSPC microbial consortia (B. Zorn, 

unpublished data).  

 

Fluorescence direct counts 

Fluorescence direct counts were performed on samples from Mn Falls and Mud Trap Falls (CSPC) to 

confirm the validity of real-time quantitative PCR results (Fig. S2). Cave biofilm samples were collected 

for fluorescence direct counts in Fall 2009. Upon receipt in the lab, 0.1 g (wet weight) of biofilm material 

was mixed 1:10 w/v with 0.1% (final concentration) sodium pyrophosphate (Na4P2O7.10 H2O) and 

vortexed for ten minutes to disrupt cell clumps and homogenize the material. Samples were fixed in a 4% 

paraformaldehyde solution and stored at 4°C overnight. The following morning, samples were re-

suspended by vortexing, and a 5 µL sample was then applied to a slide and evenly spread over 484 mm2 

surface area. Samples were stained with 1 µg/mL (final concentration) DAPI (4,6-diamino-2-

phenylindole), and Citiflour Antifadent Mounting Medium AF1 (Electron Microscopy Sciences, Hatfield, 

PA) was applied to prevent bleaching of the DAPI fluorescent signal. Fluorescence direct counts were 

conducted at 100X magnification on an Olympus Bx51 fluorescence microscope. Fields of view were 

randomly selected and counted until a minimum of 300 cells/sample were visualized and recorded. 

 

DNA extraction, cloning, sequencing, and phylogenetic analysis 

DNA was extracted from cave samples using a bead beating protocol with the Fast DNA Spin Kit for Soil 

(MP Biomedicals, Solon, OH). The concentration of extracted DNA was determined using a NanoDrop 

ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE). Extracted DNA was used to 

create a total of four clone libraries. For bacteria, one library each was created from DNA extracted from 

light and dark material at the Mn Falls site. For archaea, one library was created from DNA extracted 

from each cave biofilm (Mn Falls and Mud Trap Falls). PCR amplification of bacterial and archaeal SSU 
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rRNA gene sequences was conducted using the primer 27F 5’AGAGTTTGATCMTGGCTCAG (Lane, 

1991) combined with a modified version of 1492R primer 5’RGYTACCTTGTTACGACTT (for bacteria) 

(Emerson and Moyer, 2002) and the 109F 5’ACKGCTCAGTAACACGT and 912R 

5’CTCCCCCGCCAATTCCTTTA primer pair for archaea (Lueders and Friedrich, 2000). PCR 

amplifications were conducted in triplicate, and amplified PCR products were pooled before purification 

using either the Montage® PCR Purification Kit (Millipore, Billerica, MA) or the QIAquick PCR 

Purification Kit (Qiagen, Valencia, CA). PCR products were cloned into TOPO TA pcr®2.1 vectors 

(Invitrogen, Carlsbad, CA), and plasmid DNA extracted from transformants using the QIAprep Spin 

Miniprep Kit (Qiagen, Valencia, CA) was screened by sequencing using the M13F(-20) primer. 96 well 

plates of glycerol stocks were prepared for each sample site using each primer set and sequenced using 

M13F(-20) and M13R(-27) primers. Sequencing was conducted at Beckman-Coulter Genomics (Danvers, 

MA). Chimeric sequences were eliminated from analysis prior to consensus sequence construction. 

Sequences from both libraries were pooled (creating a ca. 180 sequence bacterial library and 65 sequence 

archaeal library) for DOTUR analysis in order to make OTU determinations (Schloss and Handelsman, 

2005). Representative sequences for each OTU for archaea, or each dominant OTU (as defined by two or 

more sequence representatives) for bacteria were chosen based on sequence length and quality. For the 

bacterial dominant OTUs, additional sequencing of transformant plasmid DNA was conducted using 

primers 357F 5’CCTACGGGAGGCAGCAG, 926R 5’CCGYCWATTCMTTTRGTTT, and 1098R 

5’GGGTYKCGCTCGTTGC to obtain a full-length SSU rRNA gene sequence. Contigs were assembled 

using Sequencer sequence analysis software (Gene Codes Corporation, Ann Arbor, MI). For phylogenetic 

analysis, additional sequences of interest were selected using ARB (Ludwig et al., 2004) and the NCBI 

taxonomic database (Johnson et al., 2008). OTU and additional sequences of interest were aligned using 

the on-line SILVA aligner (Pruesse et al., 2007). Phylogenetic trees (Fig. 3-6 and Fig. S3) were 

constructed using the PHYLIP software package (Felsenstein, 2004) by conducting both neighbour-

joining and maximum likelihood analysis.  Clone sequences were deposited in GenBank under the 

accession numbers JN820160-JN820219. 
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Isolation of Mn(II)-oxidizing cave microorganisms on agar media 

Mn oxide rich samples from ferromanganese biofilms, micronodules, and coatings on rock walls and 

speleothems were collected in an attempt to cultivate Mn(II)-oxidizing cave microorganisms. Samples 

were transported to the lab on ice and immediately plated on a variety of media designed to target the 

phylogenetically diverse array of Mn-oxidizers. Some plates were incubated under full oxygen conditions, 

while others were incubated microaerophilically, with the recognition that oxygen limited environments 

constitute important niches in cave systems (Portillo and Gonzalez, 2009). More than ten media types 

were utilized over the course of the study. A modified version of AY media (Santelli et al., 2011) was 

created by supplementing the media post-autoclaving with 100 µM MnCl2. A modified version of Burk’s 

nitrogen-free medium (Mohandas, 1988) was created to target putative nitrogen-fixing, Mn(II)-oxidizing 

microorganisms by substituting an equimolar concentration of succinic acid, disodium salt for sucrose as 

a carbon source and amending the media (post-autoclaving) with 100 µM MnCl2 and 3.7 mM FeCl3. A 

novel media, Nitrate Mineral Salts (NMS), was designed for this study by T. Craig to target 

methylotrophic Mn(II)-oxidizers. NMS contains (in g L-1)1 MgSO4•7H20, 0.14 CaCl2•2H20, 1 KNO3, 0.27 

KH2PO4, 0.3 NaH2PO4, 1 mL trace element solution (containing in mg L-1 1000 EDTA, 400 FeSO4•7H20, 

250 CuSO4•5H20, 20 ZnSO4•7H20, 6 MnCl2•4H20, 60 H3BO3, 40 CoCl2•6H20, 2CaCl2•2H20, 4 

NiCl2•6H20, 6 Na2Mo4•2H20). pH of the media was adjusted ca. 7.1-7.2 before autoclaving, and  15 g agar 

was added for plates. NMS media was supplemented post-autoclaving with sterile 0.02 M Hepes buffer 

pH 7.2, 5 µM ferrous ammonium citrate, 0.2% v/v vitamin solution for J medium (Tebo et al., 2007), and 

100 µM MnCl2. For agar plates, a 0.05% v/v methanol was added as a carbon source; a 50:50 CH4(g):air 

mix was used as the sole carbon source for liquid media. A new medium, FMO2, was designed for this 

study by S.L. Bräuer and contains (in g L-1) 10 mL Major Metals 1 solution (containing in g L-1 12NaCl, 

1.2 KCl, 5 MgCl2•6H20, 1 KH2PO4, 2 NH4Cl, 1 CaCl2•2H20), 1 mL 1000X Trace Metal 1 Solution with 

NTA (containing in g L-1 0.15 CoCl2•6H20, 0.15 ZnCl2, 0.05 H3BO3, 0.02 NiCl2•6H20, 0.01 

Na2Mo4•2H20, 0.4 FeCl2•4H20, 0.1 MnSO4•4H20, 3 MgSO4•7H20, 0.1 CaCl2•2H20, 0.01 CuSO4•5H20, 
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0.18 AlK(SO4)2•12H20, 1.5 NTA), and 0.05 yeast extract. pH of the media was adjusted to ca. 7.0-7.2 

before autoclaving, and either 15 g agar or Gelrite gellan gum (as suggested by Hara et al., 2009) was 

added for plates. The media was supplemented post-autoclaving with sterile 0.02 M Hepes buffer pH 7.2, 

5 µM ferrous ammonium citrate, 0.2% v/v vitamin solution for J medium (Tebo et al., 2007), 100 µM 

MnCl2, and either 10% 2M arabinose, 10% 2M succinate, or 10% casamino acids as a carbon source. 

Plates were inoculated by spreading 80 µL of a 1% v/v Mn oxide rich sample in 0.02M Hepes buffer pH 

7.2 on agar-solidified media. All cultures were incubated in the dark at 10°C to mimic environmental 

conditions within caves. Mn(II)-oxidation was confirmed in isolates by LBB testing; LBB-positive 

isolates were re-streaked for isolation a minimum of three times on the equivalent growth medium. 

 

Isolation of Mn(II)-oxidizing cave microorganisms from serial  dilutions 

Serial dilutions to extinction were inoculated in Cellstar 96 well culture plates (greiner bio-one, Monroe, 

NC) using three different media types: FMO2 media with either 10% 2M arabinose, 10% 2M succinate, 

or 10% casamino acids as a carbon source. Inocula from the most dilute sample that grew and produced 

dark brown/black precipitates was transferred to the equivalent agar-solidified growth medium and were 

re-streaked for isolation a minimum of three times. Mn-oxidation was confirmed in isolates by LBB 

testing. All cultures were incubated in the dark at 10°C, mimicking environmental conditions within 

caves.  

 

Identification of the isolates 

Once a colony was isolated, a colony PCR reaction was used to screen the microorganism for 

phylogenetic placement using the universal bacterial primer 357F 5’CCTACGGGAGGCAGCAG. 

Isolates of interest were cloned using TOPO TA pcr®2.1 vectors (Invitrogen, Carlsbad, CA), and plasmid 

DNA containing the SSU rRNA gene sequence was sequenced using M13F(-20), M13R(-27), 357F 

5’CCTACGGGAGGCAGCAG, 926R 5’CCGYCWATTCMTTTRAGTTT,and 1098R 

5’GGGTYKCGCTCGTTGC primers to obtain a full-length SSU rRNA gene sequence for phylogenetic 
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placement as described above. Contigs were assembled using Sequencher sequence analysis software 

(Gene Codes Corporation, Ann Arbor, MI). Isolate sequences were deposited in GenBank under the 

accession numbers JN820147-JN820159. 

 

TEM microscopy and elemental analysis 

Several Mn-oxidizing bacterial cultures were examined using a JEOL JEM-1400 transmission electron 

microscope (TEM) equipped with an Oxford INCA energy dispersive X-ray detector (EDS) to confirm 

the presence of Mn oxides associated with microbial cells. Samples were mounted on Formvar Carbon 

Type-B, 200 mesh Cu TEM grids (Ted Pella, Redding, CA) by diluting liquid cultures 1:5 using sterile 

deionized water and applying 5 µL dilution to each grid. TEM grids were allowed to air dry in a laminar 

flow cabinet. This process was repeated a total of three times, with a total volume of 15 µL of diluted 

culture applied to each grid, and then carbon coated. Samples were initially imaged using transmission 

electron microscopy and spot analyzed with EDS to confirm the presence of Mn deposits.  Several 

samples were selected for elemental mapping via scanning transmission electron microscopy (STEM) to 

confirm the locations of Mn within the sample (Fig. 7). In all cases, EDS analysis (data not shown) 

demonstrated the presence of concentrated Mn deposits associated with microbial cells.  
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Table 1. Biogeochemical analyses of ferromanganese deposits located in cave systems within the upper 
Tennessee River Basin. Mn:Fe concentrations at sample sites were determined by ICP-OES analysis and 
are reported as an average. Substrate geochemistry was determined by X-ray diffraction. Location of 
sample site is abbreviated below as follows: Worley’s Cave (W), and Carter Salt Peter Cave (CSPC). 

Sample Site Mn                  
(ppm) 

Fe             
(ppm) 

Mn:Fe 
Concentration 

Substrate 
Geochemistry 

Ribbon Rock (W) 284.6 266.8 1.07 Quartz, Illite, Trace 
Dolomite 

River Bank (W) 123.2 275.7 0.45 Quartz, Orthoclase, 
Illite, Trace Dolomite 

Weathered Ribbon 
Rock (W) 125.4 323.8 0.39 Quartz, Orthoclase, 

Illite 

Mn Chamber (W) 77.4 342.6 0.22 Quartz, Trace Calcite, 
Minor Orthoclase 

Dinosaur Cove 
Popcorn (CSPC) 22.3 124.8 0.18 Calcite 

Dinosaur Cove Mud 
(CSPC) 205.3 343.8 0.59 Nontronite 

Watermark (CSPC) 14.3 254.7 0.06 Nontronite 

Mn Falls (CSPC) 327.5 361.4 0.91 Nontronite 

Dinosaur Cove 
(CSPC) 10.9 50.1 0.22 Calcite 
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CHAPTER 3: EVIDENCE OF SUSTAINED ANTHROPOGENIC IMPACT IN CARTER SALT PETER 

CAVE, CARTER COUNTY, TENNESSEE 

Summary 

 

Carter Salt Peter Cave, Carter County, Tennessee, is an epigenic cave system typical of those found 

within the Appalachian region. Evidence of anthropogenic impact is widespread throughout the 

cave system, and sites within the cave were evaluated for signs of contamination by human sewage 

material. Molecular-based analyses of DNA extracted from a seep biofilm, Mn Falls, demonstrated 

the presence of a Bacteroides-Prevotella human-signature in DNA extracted from the biofilm in 

both July 2009 and July 2011. Culture-based enumeration of estimated cell number at the Mn Falls 

biofilm seep site revealed a consistently higher count of culturable heterotrophic bacteria and 

cultivable percentage of the total bacterial population in comparison to a nearby seep biofilm, Mud 

Trap Falls, with less water flow. Both findings are consistent with a hypothesis of nutrient loading 

via sewage contamination at the Mn Falls site and provide evidence for sustained anthropogenic 

impact within the Carter Salt Peter Cave system. Cave and karst systems contain unique and 

highly-adapted macro- and microflora that are intrinsically vulnerable to pollution. Therefore, 

continued monitoring of the Carter Salt Peter Cave system is imperative to provide baseline data 

for the development of a management plan to protect this unique cave ecosystem.  
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Introduction 

 

Karst terrain is a heterogeneous landscape that covers 20% of the Earth’s dry land surface and 40% of the 

land in the United States east of Oklahoma (White et al., 1995; Ford, 2006). Characteristic topographic 

features of karst regions include sinkholes, subsidence zones, and swallow holes, while subsurface 

features include complex, dendritic internal drainage patterns (conduits) that widen to form spaces 

accessible to humans, such as caves and caverns (Palmer, 1991). The evolution of conduit systems within 

a karst region leads to the development of complex subterranean flow patterns and a high degree of 

interconnectivity between karst drainage basins (Poulson and White, 1969; Green et al., 2006). When 

water enters a conduit system, a variety of internal factors determine its ultimate fate, and rapid 

fluctuations in water level and velocity via surface input render flow within conduits highly variable. 

Water can move at rates of 100-1000+ feet/day (Taylor and Nelson Jr., 2008), and peak flow rates during 

storm events can be up to two orders of magnitude above the base flow rate (Vesper et al., 2001). 

 The unique geomorphologic and hydrologic features of karst terrain render the landscape highly 

vulnerable to pollution. If overlying soil filtration capacity is poor, contaminants can enter karst drainage 

basins quickly (Vesper et al., 2001; Wong et al., 2011). High hydrologic conductivity permits the 

evolution of a complex conduit system in which contaminants can 1) easily penetrate the bedrock, 2) 

quickly move through these conduit systems (Boyer and Pasquarell, 1999; Field, 2002; Boyer and 

Kuczynska, 2003; Graening and Brown, 2003; Pronk et al., 2006), and 3) be dispersed across a broad 

spatial scale (Field, 2002; Simon et al., 2007). Once contaminants enter they can either be flushed 

quickly, or persist in the environment for lengthy durations (Mahler et al., 2000; Green et al., 2006; 

Goeppert and Goldscheider, 2011).  

 Contamination of karst groundwater resources poses a significant human and environmental 

threat: karst groundwater resources are the primary source of drinking water for a significant portion of 

the Earth’s population (Ford and Williams, 1989; Brosig et al., 2008), and karst systems are home to 

fragile and unique communities of micro- and macro-organisms that are highly adapted to the 



  58 

 

subterranean environment (Porter, 2007). Common contaminants within karst systems have been grouped 

into six broad categories (Vesper et al., 2001). (1) Water soluble compounds easily infiltrate karst 

systems, are dispersed with groundwater flow, and are ultimately discharged from the system. (2) Lightly, 

slightly insoluble, organic compounds (light nonaqueous phase liquids, or LNAPLs) are less dense than 

groundwater and rise to the surface. These compounds are known to persist in systems for lengthy 

durations. Heavy, insoluble, organic compounds (dense nonaqueous phase liquids, or DNAPLs) (3) are 

denser than groundwater and also have long residence times in karst systems because they sink into 

sediment/pore water. (4) Metal contamination may either be naturally occurring through host rock 

dissolution or be introduced by humans due to land use practices. Bioavailability of metal contaminants is 

primarily controlled through adsorption to metal-oxides in karst systems in pH neutral waters, thus this 

type of contaminant is typically flushed from the groundwater during pulse events that expel sediment 

and particulate matter from of karst systems (Post, 1999). (5) Pathogens and exogenous microbial 

consortia enter karst aquifers easily due to the extreme porosity of the bedrock. (6) In heavily visited 

caves, trash from irresponsible recreational cavers litters cave systems. Trash can also be introduced from 

nearby landowners who may use sinkholes as dumps for home and farm refuse (White et al., 1995). If 

transported deep within karst systems, trash can become a persistent leaky source of groundwater 

pollution. Impacts of the aforementioned categories of chemical and biological contamination have been 

extensively documented in literature (Simon and Buikema Jr., 1997; Kozar, 2002; Graening and Brown, 

2003; Wood et al., 2008; Iker et al., 2010; Goeppert and Goldscheider, 2011; Hu et al., 2011). These 

studies demonstrate the importance of developing and utilizing novel methods of monitoring karst 

groundwater resources for indicators of high levels of surface impact (Pronk et al., 2006; Pronk et al., 

2007; Pronk et al., 2009). 

 The primary impediment to research in karst systems is the inaccessibility of the closed conduit 

system to researchers (Goldscheider et al., 2006). As a result, indirect methods of water quality 

monitoring are frequently employed by researchers: culture based studies to detect coliform bacteria 

(Rusterholz and Mallory, 1994; Mikell Jr. et al., 1996), molecular techniques to identify the 
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presence/absence of fecal indicators and endemic species in karst systems (Porter, 2007; Ahmed et al., 

2008a; Roslev and Bukh, 2011), and the use of fluorescent dye-tracers and microspheres to model water 

flow and pathogen dispersal in conduit systems (Gao, 2011; Goeppert and Goldscheider, 2011). Direct 

study of karst environments is restricted to open conduits that are large enough to allow for human 

movement and environmental manipulation. For this reason, cave research has become a focal point in 

delineating the effects of anthropogenic impact on karst terrain. 

 As is the case with karst systems in general, anthropogenic impact in cave systems is a 

phenomenon that has been documented worldwide (Watson et al., 1997; Ciferri, 1999; Chelius and 

Moore, 2004; Zhong et al., 2011). The cave interior environment can be altered by vandalism, speleothem 

removal, and graffiti. Changes in hydrological flow regimes, with a downstream impact on speleogenic 

processes, have been linked to human activity: even something as simple as touching a speleothem 

without a glove could deposit oil on the surface of a rock and alter drip patterns and speleothem formation 

(Barton, 2006). The cave microclimate and geochemical environment is easily altered by human presence, 

which can disrupt the delicate balance of cave ecosystems by impacting nutrient cycling and 

biomineralization processes (Hoyos et al., 1998; Schabereiter-Gurtner et al., 2002; Barton et al., 2007; 

Bastian and Alabouvette, 2009; Cuezva et al., 2009; Portillo et al., 2009; Faimon et al., 2011; Fernandez-

Cortes et al., 2011). Human foot traffic in caves has been linked to sediment compaction/erosion and the 

introduction of allocthonous nutrients and organisms (Simon and Buikema Jr., 1997; Hunter et al., 2004; 

Lavoie and Northup, 2005; van Beynen and Townsend, 2005). These changes have been shown to destroy 

microhabitats (Northup, 2011), alter cave biogeochemical cycles, and impact sensitive cave fauna such as 

bats (Blehert et al., 2011). Finally, surface impacts such as land use changes and alterations in vegetation 

can affect soil and epikarst filtration of drip water and have the potential to introduce nutrient loads and 

pathogenic microorganisms into cave systems through groundwater percolation (Watson et al., 1997). 

Anthropogenic impacts can be localized at a single site within a cave (Shapiro and Pringle, 2010; 

Gillieson, 2011), or spread throughout an entire cave system (Watson et al., 1997). Any type of impact 

within caves is primarily manifest at the lower trophic levels, particularly in cave microbial communities, 
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which have the potential to exert powerful bottom-up controls on ecosystem health and stability within a 

cave (Horner-Devine et al., 2003). Due to the constancy of the cave environment, impact is real, quickly 

detrimental, and hard to reverse. 

 In 2009 a study was initiated to characterize the geomicrobiology of ferromanganese deposits in 

Carter Salt Peter Cave (herein CSPC), Carter County, Tennessee. Early on, impact within the CSPC 

system was evident. During an initial exploratory visit to the cave in July 2009, researchers noted 1) an 

abundance of graffiti covering cave rocks and walls, 2) a prevalence of litter throughout the cave system, 

and 3) a distinct sewage odor was present in portions of the cave with active water flow. At one of these 

sites, a thick, dark black, microbial biofilm (Mn Falls), full of microcrystalline Mn oxide minerals, flowed 

down the cave wall and onto the cave floor. One of the water sources for CSPC is known to be 

contaminated by a variety of inputs, including fecal coliforms (Gao et al., 2006), and many streams in this 

region are listed as impaired bodies of water (Gao, 2011). A member of the Mountain Empire Grotto in 

Johnson City, Tennessee, noted that the appearance of the Mn Falls biofilm in 2008 coincided with a time 

in which a local septic tank company had been reportedly dumping raw sewage into a sinkhole that is 

hydrologically linked to CSPC (John Matthews, personal communication). We began monitoring the site 

in 2009. From 2009-2011, the appearance of the Mn Falls biofilm changed drastically, losing its dark 

black color, and exhibiting a dramatic visual reduction in Mn(IV)-oxide production, though estimated 

cells/g wet weight biofilm material remained relatively constant and field tests continued to demonstrate 

the presence of Mn oxides, as detected using Leucoberbelin Blue. 

 Early water quality monitoring efforts at the Mn Falls site documented fluorine concentrations 

that were an order of magnitude greater than background concentrations (S.K. Carmichael, unpublished 

data). Because there are no natural sources of fluorine in the region, this fluorine likely comes from the 

local, fluoridated municipal water source. In addition, high nitrogen and/or phosphorous loads were 

detected in cave water, which can potentially be linked to agricultural impacts and/or sewage infiltration 

within the cave system. Microbiological studies documented the presence of several dominant OTUs (as 

defined by two or more sequences represented by an OTU) in clone libraries constructed from Mn Falls 
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biofilm material that provide further circumstantial evidence of nutrient loading/sewage contamination at 

this site (Chapter Two). Five OTUs (ca. 11% of sequences represented by dominant OTUs) were closely 

related (≥97% identical) to environmental clones isolated from fecal contaminated water and activated 

sludge. A sixth OTU ( 6% of sequences represented by dominant OTUs) shared 99% identity over a 1,488 

bp alignment to Leptothrix chlodnii, a species that has been isolated from organic-rich polluted water and 

activated sludge (van Veen et al., 1978; Spring, 2006). In addition, we were able to isolate a Mn(II)-

oxidizing Leptothrix sp. (isolate G6) from the Mn Falls biofilm that shared 99% identity over a 1,489 bp 

alignment to this OTU and 99% identity over a 1,488 bp alignment with Leptothrix chlodnii. Leptothrix 

sp. G6 was isolated from a serial dilution culture containing 2.5x10-8 g wet weight biofilm material, 

indicating that Leptothrix sp. are abundant and environmentally relevant species at the Mn Falls site 

(Chapter Two). 

 Mn(II)-oxidizing bacteria are known to grow and oxidize Mn using a variety carbon sources (van 

Veen et al., 1978), from glucose, peptone, and yeast extract (Siering and Ghiorse, 1996; Tebo et al., 

2007) to succinate (Chapter Two), acetate, propionate, and butyrate (van Veen et al., 1978). These last 

three carbon sources are known byproducts of fermentation in both ruminant and human guts (Cummings, 

1981; Topping and Clifton, 2001) and are excreted in feces. This provides further circumstantial evidence 

to support a hypothesis linking nutrient/sewage infiltration at the Mn Falls site and a link between blooms 

of Mn(II)-oxidizing biofilms in this shallow cave system. Given the dramatic change in the appearance of 

the Mn Falls biofilm over the duration of the study and the possibility that this change may have 

somehow been linked to exogenous nutrient input to the cave system, an effort was initiated to document 

the extent of human impact within the CSPC system, and to either validate or alleviate concern over 

potential fecal contamination at the site.  

 Controlled experimentation of limestone inoculated with a known microbial consortia has 

demonstrated that culture-dependent and culture-independent techniques yield contrasting snapshots of 

true community diversity in karst systems (Laiz et al., 2003). Due to this phenomenon, comprehensive 

analyses of microbial ecology are best completed by pairing both types of methodologies (Donachie et 
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al., 2007; Ritz, 2007; Vartoukian et al., 2010). Therefore, a polyphasic approach using water chemistry 

analyses, molecular markers, and culture-dependent cell enumeration assays was utilized to determine the 

presence of anthropogenic impact via nutrient loading.  Data collected over a three-year extended study 

has provided evidence of sustained anthropogenic impact within the Carter Salt Peter Cave system. 

 

Results 

 

Description of sample sites within Carter Salt Peter Cave 

Carter Salt Peter Cave contains abundant ferromanganese deposits, which are visible in the form of black 

or chocolate brown biofilms and patinas that coat cave walls and speleothems. The source of reduced 

Fe(II) and Mn(II) necessary for the formation of these deposits is likely the Knox Dolomite bedrock as 

studies in similar systems indicate that these reduced compounds may enter a cave via seepage, 

groundwater percolation, or as a result of bedrock geochemistry (Moore, 1981; Levy, 2007; Rossi et al., 

2010). Samples from this study were obtained from two Mn(II)-oxidizing biofilms located in physical 

proximity to one another (Fig. 1). Mn Falls, the site of alleged sewage contamination, experienced a 

previously described dramatic change in appearance (Fig. 2A and 2B) over the duration of one year. Mud 

Trap Falls (Fig. 2C), an adjacent site that is not hydrologically linked to Mn Falls (Y. Gao, personal 

communication), did not undergo the dramatic change in appearance that was seen at Mn Falls. Therefore, 

Mud Trap Falls was selected as a comparison site.  

 

Detection of human-specific Bacteroides-Prevotella 16S rRNA gene sequences in DNA extracted from the 

Mn Falls biofilm site 

A molecular-based survey of the Mn Falls site was initiated to detect the presence or absence of human 

fecal indicators in DNA extracted from the biofilm from the time of the alleged pollution and at regular 

intervals post impact. A primer set designed by Bernhard and Field (2000a, b) targeting human-specific 

Bacteroides-Prevotella was chosen due to its sensitivity and reliability according to previous reports in 
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the literature (Ahmed et al., 2009b; Ahmed et al., 2009a). Multiple attempts at amplification of DNA 

extracted from both Mn Falls and Mud Trap Falls resulted in two positive amplifications, both from Mn 

Falls: sample F, extracted in July 2009 during an initial sampling trip to the cave when the biofilm was in 

bloom (OTUs from this extraction are prefaced by a F in Fig. 3), and sample 4, extracted in July 2011 

during a more recent sampling trip to the cave when the biofilm was drastically reduced in appearance 

(OTUs from this extraction are prefaced by a 4 in Fig. 3). Multiple attempts at amplification of DNA 

extracted from Mud Trap Falls were unsuccessful. Due to the high degree of similarity among all cloned 

sequences, clones were binned into OTUs for phylogenetic analysis. Using a 99% cutoff, analysis of 

bacterial clones revealed 6 unique OTUs (Fig. 3) out of ca. 15 total sequences. 

 Three OTUs, FB12, 4A08, and FB01, represented sequences that are members of the Prevotella 

spp., a genus that is commonly isolated from the oral cavity, upper respiratory tract, and urogenital tract 

of humans (Shah and Collins, 1990). Clone FB12 shared 100% identity over a ca. 700 bp read to a clone 

isolated from a study of the microbiota of the human intestine (Walker et al., 2011), and 99% identity to 

clones isolated from the human gut (Hayashi et al., 2002). FB12’s closest cultured relative was Prevotella 

copri, the type strain of which was isolated from human feces (Hayashi et al., 2007). Clone 4A08 shared 

99% identity to environmental clones isolated from fecal contaminated watersheds (Lamendella et al., 

2007; Lamendella et al., 2009), and 97% identity to its’ closest cultured relative, Prevotella paludivivens, 

a species isolated from rice-plant residue (Ueki et al., 2007). Clone FB01 shared 99% identity to 

environmental clones isolated from equine-fecal contaminated water (Simpson et al., 2004). 

 The three remaining OTUs, 4A09, FB08, and FB10, represented sequences that are members of 

the Bacteroides spp., a genus commonly isolated from the mammalian gastrointestinal tract (Shah and 

Collins, 1990). Clone 4A09 shared 98% identity over a ca. 700 bp read to environmental clones isolated 

from river water polluted with feces (Ju-Yong et al., 2010) and human sewage samples (Dorai-Raj et al., 

2009). Clone FB08 shared 100% identity to clones isolated from the human intestine (Walker et al., 2011) 

and human feces. Clone FB10 shared 99% identity to clones isolated from the human intestine and human 
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feces in as study investigating the association of human gut microbial ecology with obesity (Ley et al., 

2006). 

 Molecular evidence from this study indicates the presence of a Bacteroides-Prevotella fecal 

signature in DNA extracted from the Mn Falls biofilm in July 2009 and July 2011. Phylogenetic analysis 

from clone sequences suggests a stronger human-specific signature in July 2009, with 50% of the 

sequences clustering with sequences from human feces, a conclusion that is consistent with the hypothesis 

of contamination localized at this site within the cave. A weaker human signature, as defined by a lower 

percentage of sequences (20%) clustering with sequences from human feces, was detected in the July 

2011 sample of Mn Falls, providing evidence of sustained anthropogenic impact at this site within the 

Carter Salt Peter Cave system.  

 

Enumeration of culturable heterotrophic bacteria in cave biofilms using most probable number assays 

It is a well established fact that the majority of microbes within the environment are recalcitrant to 

cultivation, a problem that compounds the lack of knowledge regarding the role that microbes play within 

the environment (Staley and Konopka, 1985; Rappé and Giovannoni, 2003). A variety of factors 

contribute to the inability to cultivate the majority of microbial species using traditional media- from 

dormancy (Jones and Lennon, 2010; Lennon and Jones, 2011) to anaerobic, oligotrophic, or 

chemoautotrophic lifestyles (Mikell Jr. et al., 1996). In environmental studies, direct cell counts typically 

exceed viable cell counts by several orders of magnitude (Amann et al., 1995; Goldscheider et al., 2006; 

Kimura et al., 2011). The issue of non-cultivability is magnified in cave environments where microbes are 

adapted to the unique geochemical and environmental conditions of a given cave (Barton, 2006; 

Glausiusz, 2007).  

 Microbial species within pristine caves (those that have little or minimal human impact) are 

adapted to leading an oligotrophic lifestyle. Utilization of a typical carbon-rich media in an attempt to 

cultivate indigenous cave organisms would be unsuccessful, as the slow-growth lifestyle of oligotrophs is 

disrupted in the presence of rich carbon resources with devastating effects to the microbial cell (Koch, 
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1997). However, human-related microbiota and opportunistic pathogens, which are generally not 

endogenous members of the cave microflora, are adapted to high-quality carbon environments and grow 

well on carbon-rich media. Therefore, it is reasonable to hypothesize that sites within cave systems that 

experience impact from sewage/nutrient loading would demonstrate higher culturable heterotrophic cell 

counts than areas without impact. Further, data in the literature support this hypothesis (see Table 1 in 

Amann et al., 1995). Most probable number (MPN) assays (Table 1) were utilized to test this hypothesis 

through the enumeration of total culturable heterotrophic bacteria and total culturable heterotrophic 

Mn(II)-oxidizers in two Mn(II)-oxidizing cave biofilms, Mn Falls and Mud Trap Falls.  

 Samples from cave biofilms for MPN assays were obtained on three different occasions, February 

2010 (Mud Trap Falls), May 2010 (Mn Falls), and July 2010 (Mn Falls and Mud Trap Falls) (Table 1). 

Data from a prior molecular-based experiment (Chapter Two) indicated that total estimated bacterial cell 

counts remained relatively constant over the duration of the study period. A difference was observed 

between total estimated bacterial cell counts and total culturable heterotrophic bacteria at the Mud Trap 

Falls site; however, there was significant overlap between the total estimated bacterial cell counts and 

total culturable heterotrophic bacteria at the Mn Falls site. Results from cultivation-based enumeration of 

heterotrophic Mn(II)-oxidizing bacteria revealed no significant differences between population numbers 

at Mud Trap and Mn Falls, though a slight increase in the percent culturable Mn(II)-oxidizing bacteria 

was observed at Mud Trap Falls. This observation is likely a result of a decrease in estimated total 

bacteria at this site as compared to the Mn Falls site.  

 Results from cultivation-based enumeration of total heterotrophic bacteria revealed an interesting 

trend. Data from the February 2010 sampling of Mud Trap Falls indicated an average count of 1.1×108 

cells/g wet weight; data from the May 2010 sampling of Mn Falls indicated an average count of 2.5×1010 

cells/g wet weight. No overlap in 95% confidence intervals was observed between these two samples, 

which is indicative of a significant difference in total culturable heterotrophic bacteria between these two 

sites. July 2010 data from both sites reflects the same pattern, with an average count of 9.6×106 cells/g 

wet weight at Mud Trap Falls and 9.6×109 cells/g wet weight at Mn Falls. The difference between the two 
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sites in July 2010 data is more pronounced, as total cultivable heterotrophic bacteria at Mn Falls 

outnumbered Mud Trap falls by three orders of magnitude, with no overlap observed in 95% confidence 

intervals. An observed increase in the total culturable heterotrophic bacteria at the Mn Falls site is 

suggestive of greater nutrient loading at this site. A slight overlap was observed between the 95% upper 

confidence interval at Mud Trap Falls in February 2010 and the 95% lower confidence interval at Mn 

Falls in July 2010.  However, the percent of culturable heterotrophic bacteria within the total population 

was consistently higher at Mn Falls, approaching 100%, a finding that is supportive of nutrient loading at 

the site. Interestingly, the percent of culturable heterotrophic bacteria within the total population showed a 

slight variation between the two sampling dates at Mud Trap Falls. MPN results indicate that culturable 

counts at this site were significantly higher (roughly a two order of magnitude increase) in February 2010 

as compared to July 2010. This trend is reflected in a slight increase in the percent of culturable 

heterotrophic bacteria within the total population in February 2010 as well. These results mirror what was 

seen at Mn Falls, making it enticing to speculate that the Mud Trap Falls site may have been impacted by 

nutrient loading in February 2010. 

 

Discussion 

Due to the porous nature of bedrock in karst systems and the poor filtration capacity of the soil and 

epikarst zone, karst systems are inherently vulnerable to pollution (Caumartin, 1963; Field, 2002). A high 

degree of interconnectivity is observed in karst conduit systems, therefore surface impacts throughout a 

karst drainage basin can be dispersed over long distances quickly. Karst aquifers are particularly 

vulnerable to bacterial contamination and nutrient loading (Drew, 1996; Kozar, 2002; Coxon, 2011; 

Worthington, 2011) and exogenous input of this type can enter a cave or karst system via atmospheric 

deposition, percolation through the soil and epikarst, groundwater flow, or via animal/human foot traffic 

(Mahler et al., 2000; Barton and Jurado, 2007; Pronk et al., 2007). The persistence and/or endogenous 

nature of human associated microbial pathogens in the karst environment is a subject of debate (Hunter et 

al., 2004; Personné et al., 2004; Barton and Pace, 2005; Scott et al., 2005; Goldscheider et al., 2006; 
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Ahmed et al., 2008b). However, it is recognized that autochthonous microbial communities in cave and 

karst systems represent diverse, highly adapted, stable consortia (Farnleitner et al., 2005; Goldscheider et 

al., 2006; Pronk et al., 2009) residing within environments that are fragile and highly vulnerable to 

disturbance (Roth, 1993; Watson et al., 1997; van Beynen and Townsend, 2005). 

 The occurrence of human and ruminant-related fecal indicators in karst groundwater and 

subsurface systems is well documented in the literature (Simon and Buikema Jr., 1997; Boyer and 

Pasquarell, 1999; Kozar, 2002; Boyer and Kuczynska, 2003; Hunter et al., 2004; Personné et al., 2004; 

Pronk et al., 2007; Goeppert and Goldscheider, 2011). Molecular-based methods have been successfully 

employed in the past to detect the presence of human fecal indicators in karst aquifers (Reischer et al., 

2007). Bacteroides spp. represent a prominent new alternative indicator for the detection of fecal 

pollution in environmental samples due to an inability to survive in a non-host environment for lengthy 

periods of time, a strict association with warm-blooded animals, and a relative abundance of members of 

this genus in fecal samples as compared to traditional indicators (Ahmed et al., 2008a). In the present 

study, molecular-based characterization of the Mn Falls microbial community demonstrated the presence 

of a Bacteroides-Prevotella fecal signature in DNA extracted from the Mn Falls biofilm in July 2009 and 

July 2011, providing evidence of sustained anthropogenic impact at this site.  

 Karst aquifers and deep cave systems with minimal human impact are considered to be 

oligotrophic environments, defined by less than 2 mg total organic carbon per liter (Barton and Jurado, 

2007), and several nutrients such as nitrogen, sulfur, phosphorous, and iron are considered to be 

additional limiting factors in these systems (Goldscheider et al., 2006).  Organisms that thrive in rich 

carbon environments, like those associated with feces, would not thrive in these types of systems without 

nutrient loading from exogenous sources. Several prior studies establish a link between carbon 

amendment/nutrient loading and an increase in culturable heterotrophic bacteria at impacted sites within 

cave systems. A recent study by Ikner et al. (2007) investigating the culturable microbial diversity of 

Kartchner Caverns, Arizona revealed that areas of high human impact were associated with cultivable 

counts of bacteria that were two orders of magnitude higher than similar counts in low impact zones 
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within the cave. In addition, localized sites associated with the input of rich carbon sources (e.g., guano, 

animal feces, human traffic) in several European cave systems demonstrated higher culturable cell counts 

than sites not affected by nutrient loading (Mulec et al., 2012). In other impacted cave systems, bacterial 

biomass was shown to increase by an order of magnitude in cave pools impacted by septic system effluent 

as compared to reference pools within the same system (Simon and Buikema Jr., 1997). In Wind Cave, 

South Dakota, experimental manipulations of soil plots revealed an increase in bacterial biomass within 

plots fertilized by feces or a combination of lint and feces relative to plots fertilized with lint alone or 

control plots, findings that confirm the nutrient-limited status of cave environments (Chelius et al., 2009). 

Significantly higher average cultivable cell counts at the Mn Falls site and consistently higher percentage 

of culturable bacteria support the hypothesis of localized nutrient loading/sewage contamination at the 

Mn Falls site in CSPC. However, it is important to note that cultivation-based experiments are inherently 

biased by media design and inoculation/incubation techniques (Rusterholz and Mallory, 1994), and that 

dilution of fecal matter, which would occur within karst conduit systems, does affect the ability to culture 

and detect fecal indicator bacteria in environmental samples (Ahmed et al., 2008b).   

 Results from the present study demonstrate the presence of human-specific fecal indicators within 

the CSPC system and provide compelling support for impact via nutrient loading at the Mn Falls site. Due 

to the inherent stability of the cave environment and the highly adapted cave macro- and microfauna, this 

type of impact has the potential to disrupt the delicate balance of life within a cave and exert a strong 

negative effect on ecosystem function (Fernandez-Cortes et al., 2011). Eutrophication of the cave 

environment has an immediate and cumulative effect (Gillieson, 2011) on cave microbial communities 

and rich carbon input is known to drive successional change within microbial communities (Fierer et al., 

2010). In many cave systems, microbial communities are an important source of the primary productivity 

that sustains the ecosystem; therefore, changes within cave microbial communities have the potential to 

exert powerful bottom-up controls on ecosystems structure and function (Torsvik et al., 2002; Simon et 

al., 2003; Simon et al., 2007). Localized variations in geochemistry have been shown to impact microbial 

community structure (Barton et al., 2007; Shabarova and Pernthaler, 2010; Sonnleitner et al., 2011), 
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which can impact biogeochemical cycling and mineralization processes within an environment (Frierdich 

et al., 2011; Santelli et al., 2011). This is especially true in the case of nutrient loading within oligotrophic 

systems, as changes in resource availability have the potential to alter the biochemistry of individual cells 

(Klappenbach et al., 2000; Grünke et al., 2011), which would in turn impact ecosystem processes 

(Lennon and Cottingham, 2008).  

 This latter point is best demonstrated in the case of European show caves that have been ravaged 

by human activity (Cañaveras et al., 2001; Bastian et al., 2010; Saiz-Jimenez et al., 2011). Similar 

conclusions are reached by Iker et al. (2010) in research that linked changes in nitrogen-cycling within a 

cave system to a change in cave microfloral composition as a result of pesticide contamination within the 

system, and by Bastian et al. (2009) in research that linked changes in endogenous cave microflora with 

biocide treatments in Lascaux Cave. The effect of nutrient enrichment on microbial community diversity 

is less clear; however, it is clear that nutrient availability in cave systems is linked to niche diversity 

(Macalady et al., 2008; Engel et al., 2010), which plays a role in determining microbial community 

structure and species richness. The composition of cave microbial communities directly impacts the cave 

environment through mediating biogeochemical processes (Horner-Devine et al., 2003), shaping the cave 

environment (Portillo et al., 2009; Stomeo et al., 2009; Portillo and Gonzalez, 2010), and providing the 

functional diversity that is necessary for the maintenance of ecosystem stability (Torsvik et al., 2002).  

 Cave microbial consortia and the environments in which they reside are highly vulnerable to an 

array of impacts as a result of anthropogenic disturbance (Bastian and Alabouvette, 2009; Northup, 2011). 

Karst management is a hot topic in research today, as anthropogenic impact in karst systems continues to 

be a widespread problem (van Beynen, 2011). Legal protection for cave and karst systems has been 

extended at the Federal and State levels (Huppert, 1995); but, enacted legislation varies in the degree to 

which it protects these vulnerable systems and is too often wrought with loopholes (Carpenter and Busch, 

1993; van Beynen and Townsend, 2005). There are several non-profit and community organizations (such 

as grottos) that actively work through outreach efforts to educate the public regarding the effects of 

human impact in karst regions, the importance of sustainable practices in karst regions, and the utilization 
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of minimal impact techniques when caving. These types of efforts have been called for by the caving 

community for a long time (Barton, 2006). National and international organizations, such as the National 

Speleological Society and the IUCN, have issued recommendations for the protection of cave and karst 

systems (Watson et al., 1997). However, the effectiveness of these guidelines, recommendations, and 

management plans is contingent on the accumulation of baseline data that delineates the sources of 

contamination within a system and the documentation of specific impacts within a cave or karst system 

(Northup, 2011). This conclusion demonstrates the continued need for research, especially in regions such 

as the Appalachians, where cave density is high and research in cave systems is lacking. Our hope is that 

the studies already undertaken within the CSPC system, when paired with continued monitoring of cave 

health, provide the requisite baseline evidence to develop an informed management plan for the 

protection and conservation of this fragile and unique subterranean system. 

 

Experimental Procedures 

 

Field description 

Carter Salt Peter Cave (Carter County, Tennessee, Fig. 1), located in the Ordovician Knox Dolomite unit 

(Oder, 1934), is an epigenic cave system typical of those found within the Appalachian region. At a depth 

of approximately 30 m, Carter Salt Peter Cave (herein CSPC) represents a relatively shallow system. 

Environmental conditions within the dark zone of the cave are typical of those found in other cave 

systems (Northup and Lavoie, 2001), as ambient air temperature remains around 13°C year-round (mean 

annual surface temperature for the region) and humidity approaches 100%. A variety of carbonate 

speleothem formations occur throughout the cave system (flowstone, dripstone, soda straws, corrosion 

residue), and the cave is particularly enriched in ferromanganese deposits. The cave is located in close 

proximity to agricultural land and residential areas, and the cave entrance is neither gated nor protected 

from human traffic. As a result, evidence of anthropogenic impact is widespread throughout the cave 

system.  
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Sample collection 

Samples were collected from two Mn-oxidizing cave biofilms, Mn Falls (Figs. 2A and 2B), the site of 

alleged impact, and Mud Trap Falls (Fig. 2C), and a second biofilm community located in physical 

proximity to Mn Falls, in roughly three month intervals from July 2009 to June 2011. Deposits were 

screened for the presence of Mn oxides using 0.04% Leucoberbelin Blue (LBB), a redox indicator that is 

oxidized by Mn(III) or Mn(IV) to produce a bright blue color change (Krumbein and Altmann, 1973). 

Samples were collected aseptically by scraping the deposit surface using a sterile 50 mL Falcon tube. 

Care was taken to sample at locations within a deposit that tested LBB-positive for Mn(II)-oxidation and 

to maximize the sampling of black/chocolate brown coatings in these locations. Samples were stored on 

ice, transported to the lab, and immediately processed for downstream use. 

 

DNA extraction, and PCR amplification, cloning, and phylogenetic analysis of human-specific 

Bacteroides-Prevotella 16S rRNA gene sequences 

DNA was extracted from cave samples using a bead beating protocol with the Fast DNA Spink Kit for 

Soil (MP Biomedicals, Solon, OH). The concentration of extracted DNA was determined using a 

NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE). Human-specific 

Bacteroides-Prevotella 16S rRNA gene sequences were amplified from Mn Falls biofilm material using a 

primers designed by Bernhard and Field (Bernhard and Field, 2000a) with a demonstrated detection limit 

of 1.4×10-6 g dry feces/liter. A nested PCR approach was utilized in an attempt to amplify the region of 

interest in DNA extracted from cave biofilms in early July 2009 (F), late July 2009 (F2), January 2010 

(F3-W and T), July 2011 (4).  Approximately 3 ng of environmental DNA was used as a template for the 

first round of PCR amplification using the universal Bacteroides-Prevotella primers 32F                       

(5’-AACGCTAGCTACAGGCTT) and 708R (5’-CAATCGGAGTTCTTCGTG) (Bernhard and Field, 

2000b). Each 50 µL reaction contained 1.25 U AmpliTaq Gold (Applied Biosystems, Carlsbad, CA), 50 

µM each primer, 1X PCR Gold Buffer (Applied Biosystems, Carlsbad, CA), 2 mM MgCl2 Solution 
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(Applied Biosystems, Carlsbad, CA), 200 µM each dNTP, and 2X BSA (New England Biolabs, Ipswich, 

MA). A  MJ Mini Personal Thermal Cycler (Bio-Rad, Hercules, CA) was used for all PCR-amplification 

reactions. The amplification protocol for the first round of PCR is as follows: an initial denaturation of 

94°C for 5 min, followed by 35 cycles of 94°C for 30 s, 60°C  for 1 min, and 72°C  for 2 min, followed 

by a final extension of 72°C  for 6 min. PCR amplifications were conducted in triplicate and visualized on 

a 1% agarose gel stained with GelRed Nucleic Acid Stain (Phenix Research, Candler, NC). A single 

positive band of approximately 700 bp was visualized in DNA samples F (July 2009) and 4 (July 2011) 

obtained from the Mn Falls biofilm. Amplifications of each DNA template were pooled for downstream 

use in the next round of PCR.  

 1 µL of PCR product from the pooled amplifications of F (July 2009) and 4 (July 2011) DNA 

was used as a template for PCR amplification of human-specific Bacteroides-Prevotella 16S rRNA gene 

sequences in the second round of the nested protocol. PCR amplification was conducted using the 

Bacteroides-Prevotella human-specific forward primer HF183 (5’- ATCATGAGTTCACATGTCCG) 

paired with the Bacteroides-Prevotella universal reverse primer 708R (5’-CAATCGGAGTTCTTCGTG) 

(Bernhard and Field, 2000a). Reaction conditions mimicked those given for the first round of the nested 

protocol, with the following adjustment in the amplification protocol: an initial denaturation of 94°C for 5 

min, followed by 25 cycles of 94°C for 30 s, 60°C  for 1 min, and 72°C  for 2 min, followed by a final 

extension of 72°C  for 6 min. Amplifications were conducted in triplicate, and 5 µL of PCR product for 

each template was visualized on a 1.5% agarose gel stained with GelRed Nucleic Acid Stain (Phenix 

Research, Candler, NC) to verify the presence of a ca. 600 bp band. Amplifications of each PCR template 

were pooled and concentrated by rotary evaporation to a volume of approximately 10 µL. The 

concentrated PCR product for each template was run on a 1.5% agarose gel stained with GelRed Nucleic 

Acid Stain (Phenix Research, Candler, NC). A ca. 600 bp band for each template was manually excised 

from the gel and purified using an UltraClean GelSpin DNA Extraction Kit (Mo-Bio Laboratories, 

Carlsbad, California). Purified PCR products of each DNA template were cloned into TOPO TA pcr®2.1 

vectors (Invitrogen, Carlsbad, CA), and plasmid DNA extracted from transformants using the QIAprep 
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Spin Miniprep Kit (Qiagen, Valencia, CA) was screened using the M13F(-20) primer. A small clone 

library consisting of ca. 15 clones for each DNA template was prepared and glycerol stocks were 

sequenced using the M13F(-20) primer. Sequencing was conducted at Beckman-Coulter Genomics 

(Danvers, MA). OTUs were determined by DOTUR analysis (Schloss and Handelsman, 2005), and 

representative sequences for each OTU were chosen based on sequence length and quality. For 

phylogenetic analysis, additional sequences of interest were selected using ARB (Ludwig et al., 2004) 

and the NCBI taxonomic database (Johnson et al., 2008). OTU and additional sequences of interest were 

aligned using the on-line SILVA aligner (Pruesse et al., 2007). A phylogenetic tree (Fig. 3) was 

constructed using the PHYLIP software package (Felsenstein, 2004) by conducting both neighbour-

joining and maximum likelihood analysis.  Clone sequences were deposited in GenBank under the 

accession numbers JN820135-JN820146. 

 

Most probable number assays 

Most probable number (MPN) assays were employed to determine the total number of culturable 

heterotrophic microorganisms and heterotrophic Mn(II)-oxidizing microorganisms in CSPC biofilms 

(Table 1). Biofilm samples were collected from Mn Falls and Mud Trap Falls in February, May, and July 

of 2010 and stored overnight at 4°C. FMO2 growth medium (Chapter Two), was used for MPN assays. 

Biofilm samples were centrifuged to concentrate the wet biomass and the supernatant was removed. 

Samples were weighed and diluted 1:10 with medium. Serial dilutions of 1:10 diluted biofilm samples 

were made, ranging from 10-2 to 10-11 and inoculated in Cellstar 96 well culture plates (greiner bio-one, 

Monroe, NC). Each well contained 250 µL sterile media and was inoculated with 25 µL of either biofilm 

material, a positive control (Leptothrix sp.), or a negative control in eight replicates per sample. A fifth 

plate for each sample was inoculated and tested immediately for Mn(II)-oxidation and heterotrophic 

metabolism using 50 µL 0.04% LBB (rows 1-4) and 50 µL 0.3% iodonitrotetrazolium chloride (INT) 

(Sigma Aldrich) (rows 5-8) respectively. Colorometric results from the fifth-plate test were used to 

ascertain background levels for comparison after incubation. Plates were incubated in the dark at 10°C for 
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4 weeks (to mimic cave conditions) and scored immediately using LBB and INT as described above. 

Plates were then returned to the dark at 10°C and allowed to incubate overnight to note any color change. 

MPN assays were scored again after 24 hours, with no notable change in results being observed. Results 

were applied to a downloadable MPN calculator (Curiale, 2004) to determine the total number of 

culturable heterotrophic microorganisms and culturable heterotrophic Mn(II)-oxidizing microorganisms 

in cave biofilms.   
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CHAPTER 4: SUMMARY, CONCLUSIONS, AND BROADER IMPACTS 

Introduction 

 

My research attempts to answer questions regarding the geomicrobiology of ferromanganese deposits in 

the cave-rich, but vastly understudied upper Tennessee River Basin. Specifically, I set out to answer 

questions regarding the role of Mn-biomineralization in the formation and transformation of the cave 

mineral environment (Chapter Two). Empirical observations during the study period led to the evolution 

of a second line of inquiry (addressed in Chapter Three), which specifically focused on the documentation 

of evidence of sustained anthropogenic impact within the Carter Salt Peter Cave (CSPC) system in Carter 

County, Tennessee. Here I present a summary of these results, conclusions from the work in its entirety, 

and potential lines of future investigations. I then will frame the emerging field of cave geomicrobiology 

in a broader perspective.     

 

Summary 

 

Chapter Two: Mn-biomineralization in ferromanganese deposits in caves of the upper Tennessee River 

karst Basin  

Chapter Two of this thesis explores the role of Mn-biomineralization in the formation of ferromanganese 

deposits in the caves of the upper Tennessee River Basin. Results from this study document a Mn-rich 

geochemistry at many sites within the region’s caves. One such site was the ferromanganous biofilm, Mn 

Falls located within CSPC, where Mn:Fe ratios (as measured by ICP-OES) were an order of magnitude 

greater than the bulk bedrock ratio for the Knox Dolomite as reported by Lumsden and Caudle (2001). 

Molecular evidence from the Mn Falls site revealed a microbial community that was enriched in 
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organisms related to environmental clones and isolates from metal-rich environments. Culture-based 

evidence demonstrated in vivo Mn(II)-biomineralization capacity in a phylogenetically diverse group of 

organisms. Some of these isolates (e.g., Flavobacterium, Janthinobacterium, Leptothrix) were obtained 

from high dilutions (10-8 to 10-10) of cave biofilm material, providing further support for the 

environmental relevance of Mn(II)-oxidizing biofilms in cave ferromanganese deposit formation. 

Microbial biomineralization processes are known to increase the rate of Mn(II)-oxidation up to five orders 

of magnitude above abiotic oxidation rates (Nealson et al., 1988; Dixon and Skinner, 1992), which are 

especially slow in low temperature environments such as caves (Moore, 1981). Therefore, rapid 

depositional rates, especially those which exceed oxidation rates within an environment, are indicative of 

microbial involvement in deposit formation (Nealson et al., 1988). Overall, experimental evidence 

indicates that Mn(II)-oxidizing organisms play an important role in ferromanganese deposit accretion in 

caves of the upper Tennessee River Basin.    

 Because the present study represents the first investigation of geomicrobiology in southern 

Appalachian epigenic caves, several questions remain regarding the role of microbes in 1) cave 

biogeochemical cycling and 2) the formation and transformation of secondary mineral deposits within 

these systems. Herein, I include some suggestions for future work aimed at elucidating the comprehensive 

role of microbes in the formation and dissolution of cave ferromanganese deposits. First, oxygen-limited 

environments are recognized as important niches in cave environments (Portillo and Gonzalez, 2009), yet 

we know very little about the role of anaerobes, specifically Mn(IV)-reducers, in the dissolution of cave 

ferromanganese deposits. Microbial Mn(IV)-reduction is a widespread phylogenetic trait among bacteria, 

archaea, and fungi (Lovely, 1991; Lovely et al., 2004; Gadd, 2007). Dissimilatory Mn(IV)-reduction is a 

known mode of chemolithoautotrophic growth in bacteria (Lovely, 1991), and leads to the mobilization of 

Mn within an environment (Gadd, 2004). Thus, microbial Mn(IV)-reduction represents a potentially 

important process in the dissolution of cave ferromanganese deposits that warrants future investigation.  

 Second, fungi are known to mediate key biogeochemical transformations (Sterflinger, 2000), yet 

the role of these organisms in the formation of ferromanganese deposits has long been debated (Taylor-
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George et al., 1983; Grote and Krumbein, 1992; Schelble et al., 2005). Recent research indicates that 

Mn(II)-oxidizing fungi (Miyata et al., 2003; Miyata et al., 2006; Cahyani et al., 2009; Santelli et al., 

2010; Santelli et al., 2011) and Mn(IV)-reducing fungi (Gadd, 2007) are found in a variety of 

environments. Fungal diversity in caves is thought to be high (Roble et al., 2011; Vaughan et al., 2011), 

but the role of fungi in cave biogeochemical cycles is virtually unknown (Cunningham et al., 1995; 

Bastian et al., 2009). Evidence from Chapter Two indicates that fungi represent on average 0.3% of the 

total microbial population in cave ferromanganese deposits. Because fungal species can be capable of 

Mn-oxidation and reduction, processes that would lead to the formation and dissolution of cave 

ferromanganese deposits, understanding the role of fungi cave biogeochemical cycling is a relevant and 

important future line of study. 

 Finally, continued cultivation-based efforts are needed to continue to isolate cave organisms 

involved in Mn-biomineralization. These efforts should be focused on the development of new in situ and 

lab based culture techniques (Stevenson et al., 2004; Nichols et al., 2008; Nichols et al., 2010; 

Vartoukian et al., 2010), adapted to the cave environment, that target the isolation of novel species 

involved in the biogeochemical transformation of Mn, thus shedding light on the functional role and 

environmental relevance of these organisms within the cave environment. In addition, techniques such as 

RNA-based community surveys (Gonzalez et al., 2006; Portillo et al., 2008) and FISH (Meisinger et al., 

2007; Macalady et al., 2008) should be developed and utilized as a supplement to cultivation efforts. 

These molecular-based methodologies would be useful in determining the metabolically active portion of 

the microbial population in cave ferromanganese deposits, as these organisms would be most influential 

in the formation/transformation of the cave mineral environment. However, it is important to note that 

Mn-biomineralization is not necessarily linked to metabolic activity, as Mn(II)-oxidation has been 

associated with spores of metabolically dormant Bacillus spp. (de Vrind et al., 1986; Francis and Tebo, 

2002; Dick et al., 2006).         
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Chapter Three: Evidence of sustained anthropogenic impact in the Carter Salt Peter Cave (Carter 

County, Tennessee) system 

Over the duration of the study period, we observed a striking change in the appearance of the Mn Falls 

biofilm (documented in Chapter Three), which suggested there was a link between the bloom of the Mn 

Falls biofilm and nutrient loading at this site within CSPC. Therefore, we initiated a second study within 

the CSPC system to detect the presence or absence of fecal signatures in DNA extracted from the Mn 

Falls biofilm at the time of alleged eutrophication (July 2009) and two years post-impact (July 2011). 

Results from molecular-based surveys (Chapter Three) detected the presence of Bacteroides-Prevotella 

fecal signature in DNA extracted from the Mn Falls biofilm at both sampling points; however, a stronger 

human-specific signature was detected in the July 2009 sample. DNA amplification attempts at a second 

Mn(II)-oxidizing biofilm located in CSPC, Mud Trap Falls, were unsuccessful; therefore a Bacteroides-

Prevotella fecal signature was not detected at this second site where environmental eutrophication was 

not suspected. Supplementary cultivation-based MPN analyses supported the hypothesis of nutrient-

loading at Mn Falls, as a significant increase in total culturable heterotrophic bacteria was observed at this 

site when compared to Mud Trap Falls. Results from the present study indicate that nutrient loading in 

shallow cave systems may alter microbial community composition and function, which could exert a 

downstream impact on nutrient cycling within the cave system.  

 Results also suggested that monitoring microbial community structure and function can be used 

as a way to trace contamination in karst systems. However, additional work is needed to test this 

hypothesis. First, continued monitoring of the CSPC system is required to document changes in microbial 

communities associated with fluctuations in source water quality measurements (e.g., TOC/DOC, 

nitrogen and phosphorous content, heavy metals, and fecal indicators). In addition, it would be useful to 

use cultivation-based methodologies to test which nutrient (e.g., carbon, nitrogen, or phosphorous) is a 

limiting factor in these shallow cave systems. In addition, a GIS overlay should be created to show the 

location of potential diffuse and point pollution sources in relation to CSPC. Several layers of information 

could be condensed into one GIS overlay, which would allow for manipulation and visualization of 
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watershed drainage patterns, sources of pollution, and the location of the cave. Pertinent GIS layers may 

include bedrock type, faults/fractures, overburden, hydrology, elevation, water and sewer lines, septic 

tank locations, and cave location/declination. GIS technology has been previously used in the 

development of cave management strategies to protect Wind Cave, South Dakota (Horrocks and 

Szukalski, 2002; Ohms and Reece, 2002), one of the oldest known cave systems in the world. Finally, 

baseline studies need to be conducted in pristine analogous cave systems within the upper Tennessee 

River Basin to provide data for comparison purposes. 

  

Conclusions 

 

Historically, research within the field of cave geomicrobiology in the United States has been constrained 

to 1) active, sulfidic cave systems that are hypogene in origin (Engel et al., 2003; Engel et al., 2004b; 

Engel, 2007; Spear et al., 2007; Porter et al., 2009; Engel et al., 2010), 2) deep, inactive hypogene 

systems located in the southwestern United States (Cunningham et al., 1995; Northup et al., 1997b; 

Northup et al., 2000; Provencio and Polyak, 2001; Northup et al., 2003; Spilde et al., 2005; Levy, 2007b, 

a), and 3) cave systems with high levels of economic/tourist impact such as Wind Cave, South Dakota 

(Chelius and Moore, 2004; Chelius et al., 2009) and Kartchner Caverns, Arizona (Buecher and Sidner, 

1999; Hill, 1999; Ikner et al., 2007; Vaughan et al., 2011). Only a handful of studies (Angert et al., 1998; 

Engel et al., 2001; Simon et al., 2003; Shapiro and Pringle, 2010; Campbell et al., 2011) exist 

documenting the microbial ecology of caves in the southern Appalachians, one of the five major cave 

regions in the United States (Christman and Culver, 2001).  

 In addition, none of the aforementioned studies within the Appalachian region address the 

microbial ecology of epigenic cave systems, which reflect the most common form of speleogenic process 

worldwide (Palmer, 1991). Therefore, the body of work contained within this thesis represents the first 

study of the geomicrobiology of epigenic caves in the southeastern United States. For a long time, it has 

been obvious that the microbial communities of acidic, hypogenic cave systems (Angert et al., 1998; 
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Vlasceanu et al., 2000; Engel et al., 2001; Engel et al., 2003; Engel et al., 2004b) and pH-neutral, 

epigenic systems (Schabereiter-Gurtner et al., 2002; Northup et al., 2003; Barton et al., 2004; Chelius and 

Moore, 2004; Barton and Jurado, 2007) are strikingly different in composition. This pattern is evident on 

a regional scale, where the microbial community structure of Cesspool Cave in Allegheny County, 

Virginia (Engel et al., 2001) shares little overlap with the dominant communities found in the present 

study (Chapter Two) in Carter Salt Peter Cave. However, in many ways the vastly different community 

structures found in sulfidic and carbonic cave systems display properties of functional redundancy, acting 

as agents of speleogenesis (Northup et al., 2000; Engel et al., 2004a; Taboroši, 2006) and providing the 

basis of energy for a system that is deprived of photosynthetic input (Sarbu et al., 1996; Simon et al., 

2003; Simon et al., 2007).  

 As we learn more about the geomicrobiology of cave systems within the upper Tennessee River 

Basin, it may become increasingly apparent that these relatively shallow cave systems share little 

similarity with their deeper analogous counterparts in the southwestern United States. Preliminary 

evidence from the present study (Chapter Two) suggests that this may be the case. Lechuguilla Cave 

(New Mexico) was formed over 12 million years ago by hypogenic processes; however, the cave is no 

longer actively forming and now represents a pH neutral system with similar environmental parameters 

(Boston et al., 2006) to those found in our primary study site, CSPC. The primary difference between the 

two systems is the depth of the caves: Lechuguilla is the deepest known cave system in the United States 

(depth ca. 489m) (Boston et al., 2006), whereas CSPC is a relatively shallow system (depth ca. 30m). 

Ferromanganese deposits are widespread throughout both cave systems and microbial biomineralization 

processes appear to be contributing to the accretion of these deposits. However, the microbial community 

structure in each cave appears to be markedly different. Ferromanganese deposits in Lechuguilla Cave are 

dominated by members of the Firmicutes, Nitrospira, the α-Proteobacteria (Mesorhizobium spp.), and the 

β-Proteobacteria (Aquaspirillum spp.) (Northup et al., 2003). None of these groups were dominant 

members of a ferromanganous biofilm in CSPC (Chapter Two). In addition, the archaeal community 
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composition in Northup et al.’s study was composed of several novel lineages, which do not resemble 

those found in CSPC (Chapter Two).  

 So, the question arises, what might be causing the differences in microbial community structure 

observed in ferromanganese deposits between these analogous systems? One possible explanation for the 

observed differences is the role of surface impact in deep vs. shallow cave systems. The degree of surface 

impact within a cave system depends on 1) the depth of the system, as shallow cave systems experience 

greater impact due to the lessened effect of soil/bedrock filtration (van Beynen and Townsend, 2005), 2) 

the occurrence of flowing water within a system, as water flushes nutrients and exogenous material into 

cave systems (Northup, 2011), and 3) the level of animal/human traffic within the system, as heavily 

visited caves receive higher levels of exogenous nutrient and material input (Hunter et al., 2004; Ikner et 

al., 2007; Chelius et al., 2009; Chroňáková et al., 2009). Shallow and deep cave systems would be on 

opposite ends of the impact spectrum based on these criteria. Because shallow cave systems would 

receive high levels of surface impact, it may be more effective to compare shallow caves to those 

impacted by high levels of human traffic (e.g., recreational caving activity, tourism) (Chelius and Moore, 

2004; Ikner et al., 2007; Chelius et al., 2009; Vaughan et al., 2011). However, more research is needed to 

determine if this comparison is valid.  

 The effects of anthropogenic/surface impacts on cave microbial communities have been well 

documented in prior research (Kozar, 2002; Graening and Brown, 2003; Iker et al., 2010; Hu et al., 

2011). Organic supplementation of karst systems via leached human and animal waste is known to affect 

nutrient cycling in oligotrophic karst environments by increasing both the quality and quantity of carbon 

that is available to microorganisms. The impact of carbon-rich leachate is readily observed in karst 

microbial communities, as carbon supplementation through organic contamination events has been shown 

to increase bacterial biomass in polluted subterranean pools and sediments (Simon and Buikema Jr., 

1997). In addition, experimental manipulations in Wind Cave, South Dakota provided direct evidence of a 

shift in microbial community composition, exerting a negative impact on the endemic microflora, as a 

result of alterations in organic inputs in cave soil (Chelius et al., 2009). Evidence of shifts in microbial 
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community composition as a result of organic supplementation/nutrient loading is particularly intriguing 

in light of the observations in Chapter Three of this thesis, and with the realization that little information 

exists regarding the role of anthropogenic/surface impacts (e.g., organic supplementation) on 

biomineralization processes in caves.          

 One possible explanation for the differences in community structure observed within Lechuguilla 

and CSPC may be the immediate impact of nutrient enrichment on microbial community composition. In 

the case of the Mn Falls biofilm, nutrient enrichment appeared to alter microbial function by increasing 

Mn-biomineralization. This, in turn was visible as a thick, hairy, black biofilm coating on the surface of 

the cave wall, which steadily decreased in appearance following the initial pulse period of nutrient influx. 

Findings from the present study suggest that blooms of Mn-oxidation within cave systems may be linked 

to exogenous nutrient input and therefore may provide a method to gage ecosystem health and levels of 

anthropogenic disturbance in caves.  

 The idea of using microbial communities to monitor ecosystem health in karst terrain has 

previously been asserted by cave and karst researchers (Lavoie and Northup, 2005; Pronk et al., 2009; 

Campbell et al., 2011). If this hypothesis proves to be true, monitoring of Mn oxide deposits would be 

viewed as an efficient and cost-effective method of tracing nutrient loading/anthropogenic impact in karst 

terrain. This idea could then be extended to include monitoring of Mn oxide bulk elemental composition 

using ICP-OES, as Mn oxides are known to be efficient scavengers of heavy metals (Post, 1999; White et 

al., 2009), which could enter a karst system as a result of industrial contamination (Vesper et al., 2001; 

van Beynen and Townsend, 2005).  

 

Broader Impacts 

 

Strong selective pressures (Porter, 2007) have led to the development of a unique cave macroflora 

(Poulson and White, 1969; Fong, 2011) and diverse microflora (Northup and Lavoie, 2001; Barton, 2006; 

Engel, 2007) that has traditionally been the focus of research efforts within cave systems. These 
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endeavors have led to the discovery of several new stygo- and troglobitic species that are uniquely 

adapted to an underground lifestyle (Poulson and White, 1969; Porter, 2007; Fong, 2011), the first report 

of a freshwater or terrestrial microbe-invertebrate symbiosis (Dattagupta et al., 2009), and evolving 

thoughts on the role of microbial activity in 1) catalyzing speleogenic processes (Northup et al., 1997a; 

Cañaveras et al., 1999; Barton et al., 2001; Jones, 2001; Engel et al., 2004a; Barton and Luiszer, 2005; 

Cañaveras et al., 2006) and 2) controlling biogeochemical cycling within subterranean systems (Sarbu et 

al., 1996; Chaban et al., 2006; Gorbushina, 2007; Simon et al., 2007; Portillo et al., 2009; Engel et al., 

2010; Akob and Küsel, 2011). This latter point is one of critical understanding in the face of climate 

change, as microbes exert a keystone control on ecosystem processes through the maintenance of Earth’s 

biogeochemical cycles (Postgate, 1992).  

 Research within the emerging field of cave ecology has begun to move beyond basic exploratory 

efforts, with the recognition of a variety of niches through which the cave environment contributes to 

applied science. The most prominent emerging application of cave research within a broader context deals 

with astrobiology and the search for life in extraterrestrial environments. As addressed in Appendix A 

herein, caves, as an access point to the deep subsurface, are recognized as an astrobiological analog as 

they contain biogeochemical cycles similar to those hypothesize to occur on Mars (Boston et al., 2001; 

Boynton et al., 2009), the current focal point of NASA’s search for extraterrestrial life (Baross, 2007). 

Research in the cave environment concerning microbes, biomineralization, and microbial biosignatures 

plays an integral role in the development of criteria and analytical techniques to assess and detect 

extraterrestrial biosignatures and provides a focal point for NASA’s search for extraterrestrial life. 

 In addition to applications within the biological and planetary sciences, caves are recognized as a 

novel source of bioprospecting (Onaga, 2001), the search for novel therapeutic or pharmaceutical 

compounds in the environment (Schmidt, 2004; Bhullar et. al., 2012). Efforts in this realm are often 

concentrated on the study of rare and extreme environments, as these systems are seen as unexplored 

caches of novel compounds. Several promising initial results have been identified in cave systems within 

North America (Rule et al., 2011; Sadoway and Cheeptham, 2011) and Europe (Yücel and Yamaҫ, 2010). 
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In the latter study, a group of researchers from Turkey have isolated an antibiotic-producing strain of 

Streptomyces sp. that demonstrates efficacy against methicillin-resistant Staphylococcus aureus, 

vancomycin-resistant Enterococcus faecium, and Acinetobacter baumannii (Yücel and Yamaҫ, 2010). 

Isolation of novel antibiotic compounds has profound implications for human medicine in the face of 

rising concerns over the compounding problem of an increase in multi-drug resistant organisms (Dooley 

et al., 1992; Perl, 1999; Noskin, 2001; Podnos et al., 2001; Weigel et al., 2003; Dias and Caniҫa, 2004; 

Sebaihia et al., 2006; Flatow, 2011; IDSA, 2011) paired with a decrease in drug development efforts by 

the pharmaceutical industry (Austin  et al., 1999; Schmidt, 2004; Peleg and Hooper, 2010; IDSA, 2011).  

 As points of access to the deep subsurface, caves offer us a window into an unexplored territory. 

Despite the progress that has been made within the complementary fields of cave ecology and 

geomicrobiology, we are only scratching the surface of what there is yet to discover. We are still in the 

beginning stages of understanding the true value of the biodiversity contained within cave systems and 

the critical role of cave organisms in the maintenance of ecosystem processes. These conclusions place 

further emphasis on the need to protect and preserve these unique and fragile ecosystems.  
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APPENDIX A: MICROBIAL BIOSIGNATURES IN EASTERN TENNESSEE CAVES 

Preface 

 

In 1988 the National Space Grant College and Fellowship program was established by the United States 

Congress to support research in science, technology, engineering, and mathematics with aerospace and/or 

NASA applications. The program is implemented under the auspices of NASA and consists of 52 Space 

Grant Consortia located throughout the United States. The North Carolina (NC) Space Grant was 

established in 1991 and has provided over $14 million in support through thirteen member institutions 

and seven industry, government, and non-profit partners since its inception. In the summer of 2011 my 

research documenting microbial biosignatures in an eastern Tennessee cave was supported by a NC Space 

Grant Graduate Research Fellowship, a merit based competitive fellowship program that provides up to 

$6,000 in annual support for a Master’s level student. The manuscript that follows provides a concise 

summary of my summer work 

 

Summary 

 

Biogeochemical cycling within cave systems and the physical transition from a surface to 

subsurface based ecosystem are often cited as reasons that astrobiologists have recognized caves as 

an ideal Earth‐based analog for the study of Mars. Media was designed to target the cultivation of 

cave microorganisms involved in the cycling of methane, a compound that is abundant on Mars and 

the metabolism of which is known to be a form of chemoautotrophic growth for microbial cells. 

Fourteen putative methanotrophs were isolated from Carter Salt Peter Cave (Carter County, 

Tennessee), and evidence of methane production was detected in culture media targeting 
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methanogens. In addition, the morphologies and chemical signatures of biogenic Mn oxides were 

characterized using TEM‐EDS analysis. The presence of electron-dense Mn deposits associated 

with microbial cells was confirmed in five actively‐oxidizing cultures isolated in a prior study from 

caves in the upper Tennessee River Basin. However, Synchotron based structural studies are 

needed to identify the mineral phases produced by these bacteria. Further, using terrestrial 

analogues of Martian subsurface environments will allow for the development of analytical 

techniques to detect and assess extraterrestrial biosignatures, both living and extinct.   

 

Introduction 

 

Astrobiology integrates knowledge gained from a variety of scientific disciplines to answer fundamental 

questions concerning the origin, limits, and future of both terrestrial and extraterrestrial life. Mars is a 

current focal point of NASA’s search for extraterrestrial life (Baross, 2007), as several recent lines of 

evidence indicate that 1) hydrologic cycles may have once been present on the planet (Komatsu et al., 

2009; Hurowitz et al., 2010), 2) the geochemistry of the planet is conducive to the evolution of 

chemolithoautotrophic microbial life , and 3) strong recent emissions of gases (such as methane) that may 

not be explained solely by abiotic processes (Mumma et al., 2009; Etiope et al., 2010). It is widely 

recognized within the scientific community that the search for extraterrestrial life starts on Earth in 

systems that are analogous to planetary systems that may be hospitable to life (Catling, 2004; 

Szynkiewicz et al., 2012). Our knowledge of the requirements for life adopts a terran-centric approach. At 

a basal level all terran life needs to exist is water and a source of energy (Baross, 2007). The remaining 

environmental parameters can be fairly benign or toxic, and microbial life has found ways to thrive and 

evolve in both types of conditions (Brock, 1981; Brock, 1985; Gold, 1992; Whitman et al., 1998; 

Pedersen, 2000; Baross, 2007; Staley et al., 2007; Northup et al., 2011; Stivaletta, 2011).  
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 Prokaryotes arguably represent the most diverse kingdom of life (Curtis and Sloan, 2005). A 

primary driving force in the evolution of this diversity is microbial metabolic plasticity (Woese, 1987; 

Torsvik et al., 2002), a key contributing factor towards the ability of bacteria and archaea to inhabit a 

wide variety of ecosystems, some of which represent the most extreme environments found on the Earth. 

One microbial metabolic strategy that is targeted in astrobiological research is chemolithoautotrophy, the 

ability of an organism to synthesize ATP and fix carbon by harnessing the energy contained in naturally 

occurring redox couples within an environment (e.g., sulfur oxidation/reduction, iron oxidation, 

nitrification, methane oxidation, and methanogenesis). Chemolithoautotrophic communities are abundant 

in the Earth’s deep subsurface (Stevens, 1997), making this an ideal environment for the study of 

astrobiology and microbial biosignatures (Boston et al., 2001; Gorbushina et al., 2002; Boston et al., 

2006).  

 Caves are a point of access to the subsurface and are an ideal astrobiological analog, as they 

represent a transition zone from surface to subsurface based ecosystems (Pedersen, 2000) and contain 

biogeochemical cycles similar to those hypothesized to occur on Mars (Boston et al., 2001; Boston et al., 

2006). Recent evidence suggests that the deep Martian bedrock may be partially composed of Mn- and 

Fe-rich calcium carbonates (Boynton et al., 2009; Glotch, 2010; Michalski and Niles, 2010), similar in 

gross composition to the dolomite that underlies a large portion of the upper Tennessee River Basin 

(Montañez, 1994), a region has been a focus of my thesis research for the past three years. The research 

presented in the present study focused on the identification of cave microorganisms involved in the 

cycling of methane and the signatures of biogenically produced Mn-mineral deposits. Ultimately, these 

types of studies will provide insight into the current limits of life on Earth, and aid in the development of 

criteria and analytical techniques to detect and assess extraterrestrial biosignatures.  
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Results 

 

Cultivation of cave organisms involved in methane cycling  

Four different media types designed to target the cultivation of methanotrophs were utilized in this study. 

A total of fourteen isolates were obtained from the four media types (Table 1). Based on BLAST analysis 

(Johnson et al., 2008), isolates were closely related (≥98% shared identity over a ca. 500 bp sequence) to 

clone sequences from a variety of environments, including soil, freshwater, the deep subsurface (e.g., 

caves and mines), hydrocarbon-rich environments (e.g., oil fields), sewage sludge, and low temperature 

systems (e.g., Alpine soil). In addition, several isolates (e.g., AA1, NN3) are members of a genus 

(Flavobacterium) that contains known methylotrophs (Madhaiyan et al., 2010). Three sequences (isolates 

AS, NS, 2T) generated low quality (PHRED ≤ 20) reads with substantial amounts of contamination; 

therefore, these isolates were eliminated from bioinformatic analysis. All media was supplemented with 

Mn(II) in an attempt to isolate a methanotrophic Mn(II)-oxidizer, however this effort was unsuccessful as 

all isolates tested LBB-negative for Mn(II)-oxidation. 

 Two different media (Slurry and TMM) were designed to target methanogens in the cave. 

Methanogens, a group of methane-producing anaerobic archaea, are notorious slow-growers, with 

incubation times on the order of a month or more required to detect methane production in a culture. A 

total of 48 attempts were made at inoculation (8 on 5/16/2011 and 40 on 6/16/2011), of those 17 cultures 

maintained anaerobic conditions. After four weeks of incubation, the four cultures inoculated on 

5/16/2011 that maintained anaerobic conditions were producing small amounts of methane, measured 

below 0.01% headspace volume. At the six week measurement point, these cultures all had a grey tint. 

This coloration is an indication of the presence of sulfate-reducing bacteria, which typically out-compete 

methanogens for H2 in media due to their faster doubling time (A. Hawkins, personal communication). 

From this point on, methane was undetectable in the headspace. Unfortunately, all cultures inoculated on 

6/16/2011 suffered the same fate as putative sulfate-reducing species were evident after the initial 2 

weeks of incubation. Future attempts at cultivation of cave methanogens will include an addition of 10 
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mg/L rifampicin to each culture tube as a bactericidal agent (Bräuer et al., 2004) to eliminate competition 

for H2 by sulfate-reducing bacteria.  

 

Mineralogy of biogenic Mn oxides 

TEM-EDS analysis of actively-oxidizing cave isolates confirmed the presence of electron-dense Mn 

deposits associated with microbial cells in culture (Fig. 2): Janthinobacterium sp. A6, Flavobacterium sp. 

E8, Leptothrix sp. G6, Arthrobacter sp. L, and Pseudomonas sp. Mn Falls 11. TEM‐EDS analysis (Fig. 3) 

revealed the presence of intracellular phosphorous storage granules in Pseudomonas sp. Mn Falls 11.  

 

Discussion 

 

Cultivation of cave organisms involved in methane cycling 

Results from preliminary sequencing (ca. 500 bp of the 1500 bp 16S rRNA gene sequence) suggested the 

isolation of one Arthrobacter sp. (Table 1, isolate 2S) and four Pseudomonas sp. (Table 1, isolates 1N, 

1S, 1T, and 2N) from media containing both citrate and methane as carbon sources. Arthrobacter spp. 

have been isolated from methane-rich environments previously (Kageyama et al., 2008), can be capable 

of hydrocarbon degradation (Keuth and Rehm, 1991), and have also been associated with methylotrophic 

metabolisms (Levering  et al., 1981). Pseudomonas spp. have been identified in molecular-based surveys 

of methane-rich gas hydrate sediments (Marchesi et al., 2001) and have been isolated from methane-rich 

seafloor sediments (Kobayashi et al., 2008) and laboratory bioreactors (Wilkinson et al., 1974; Cardinali-

Rezende et al., 2011). In addition, some Pseudomonas spp. are known methanotrophs (Davis et al., 

1964). Although the isolates from the present study were not growing on media containing methane as the 

sole carbon source, they are clearly capable of growth in a methane-enriched (e.g., 50% CH4) 

environment. Therefore, it is possible that these isolates are capable of methane-based (e.g 

methanotrophic or methylotrophic) metabolisms. 
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 Six isolates were obtained from media containing methane as the sole carbon source. Four of 

these isolates (Table 1, isolates AA2, AA3, NT1, and NT3) were phylogenetically affiliated with the 

genus Acinetobacter, which contains species whose genomes encode several genes involved in methane-

based metabolisms (Kanehisa et al., 2002). In addition, members of the genus Acinetobacter have been 

isolated from methane-rich sediments (Kobayashi et al., 2008) and organic-waste degrading bioreactors 

(Cardinali-Rezende et al., 2011).  The remaining two isolates (Table 1, isolates AA1 and NN3) were 

phylogenetically affiliated with the genus Flavobacterium, members of which have been detected in 

molecular-based surveys of methane-rich environments, such as rice paddy soil (Henckel et al., 1999) and 

petroleum reservoirs (Orphan et al., 2000), and have been isolated from methane-rich laboratory 

bioreactors (Wilkinson et al., 1974). In addition, some members of the Flavobacterium genus have been 

identified as facultative methylotrophs (Madhaiyan et al., 2010) and are known to contain genes that are 

involved in methane-based metabolic pathways (Kanehisa et al., 2002). These six isolates, obtained from 

media containing methane as the sole carbon source, show the most promise as being associated with a 

methanotrophic lifestyle.  

 Active methanotrophic bacteria have been identified using stable isotope probing in active, 

sulfidic cave systems (e.g., Movile Cave, Romania) (Hutchens et al., 2004). In addition, several members 

of the genera isolated in this study have been detected in culture and molecular-based surveys of Carter 

Salt Peter Cave ferromanganous biofilms (Chapter Two). Therefore, it is possible that some or all of the 

isolates from the present study are associated with methane-based metabolisms. However, additional 

molecular-based work is needed to 1) provide definitive phylogenetic placement of these isolates by 

obtaining full-length SSU rRNA gene sequences (Amann et al., 1995), 2) assess the potential for 

methanotrophic metabolisms by using molecular-based screening for the functional genes associated with 

methane-oxidation (Murrell et al., 1998), and 3) identify active methanotrophic populations by the use of 

stable isotope probing  (Morris et al., 2002; McDonald et al., 2005) or through RNA-based community 

analysis (Portillo et al., 2008).  

 Organisms closely related (100% identical over a ca. 795 bp sequence alignment) to 
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methanogenic archaea (Savant et al., 2002) have been identified via molecular-based methods in 

molecular-based surveys of Carter Salt Peter Cave ferromanganese deposits (Chapter Two). At this time, 

cultivation attempts in the present study towards the isolation of a cave methanogen appear to have been 

unsuccessful. However, in the months following the completion of the present study, methane 

measurements of the lab GC were found to be unreliable due to column leakage. Therefore, it would be 

worthwhile to replicate the cultivation techniques utilized in this study on new cave samples, as low 

amounts of methane production were detected in some cultures early on during the study period. 

Expanding the scientific community’s knowledge of microbes involved in the cycling of methane will 

better elucidate the groups of organisms which are likely to be present in the current environmental 

conditions of Mars that are favorable for the microbial metabolic transformation of methane.   

 

Mineralogy of biogenic Mn oxides 

In the present study, TEM-EDS analysis confirmed the presence of Mn oxides associate with microbial 

cells in all actively-oxidizing cultures. Initial TEM-EDS analysis of the Mn Falls 11 Pseudomonas isolate 

produced some noteworthy findings, revealing the presence of intracellular phosphorous storage granules 

in Pseudomonas sp. Mn Falls 11. This finding is particularly intriguing given the oligotrophic nature of 

many cave systems (Northup and Lavoie, 2001; Barton et al., 2004; Hunter et al., 2004; Boston et al., 

2006), though the extent of surface impact within shallow cave systems such as Carter Salt Peter Cave is 

currently unknown.  

 Although the oxidation of Mn(II) produces over 30 known Mn(IV) minerals (Hill and Forti, 

1997; Post, 1999), several of which are found in caves (White et al., 2009; Onac and Forti, 2011), at this 

time biogenic Mn oxides appear limited to todorokite and birnessite (Tebo et al., 2004; Tebo et al., 2005; 

Toner et al., 2005; Miyata et al., 2006; Northup et al., 2010; Rossi et al., 2010; Learman et al., 2011). It 

is still not fully understood how many of these microbes are oxidizing manganese (Tebo et al., 1997), so 

electron microscopy is necessary to map where the Mn oxides are being formed in or on each cell. Due to 

the angstrom scale and disordered and delicate crystal structure of biogenic Mn(IV) oxides (Nealson et 
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al., 1988; Gradziński et al., 1995; Tebo et al., 1997; Nelson et al., 1999b; Northup et al., 2004; Frierdich 

et al., 2011; Santelli et al., 2011), it is not possible to use transmission electron microscopy or standard 

powder X‐ray diffraction to successfully identify mineral phases (White et al., 2009). Instead, less 

energy‐intensive techniques such as Synchroton‐based x‐ray absorption fine‐structure (XAFS) 

spectroscopy must be used. Limited information on Mn oxide crystal structure can be attained from single 

crystal micro‐X‐ray diffraction and Fourier Transform Infrared Spectroscopy (FT-IR) as well.  

 Future work will be conducted in conjunction with Dr. Sarah Carmichael and Dr. Jeffrey Post 

(Smithsonian Institute) using single crystal micro-XRD and FT-IR to definitively determine which Mn-

minerals are produced by Janthinobacterium sp. A6 and Flavobacterium sp. E8, as these isolates are 

representative of genera that were recently described to have members capable of Mn-oxidation (Santelli 

et al., 2010; Chapter Two). In addition, future work will include microtome thin sectioning of cultures for 

TEM analysis to better determine the locations in the cell where Mn oxidation is occurring, and will also 

include in situ culturing of these strains for scanning electron microscopy analysis to better visualize 

surface morphologies.  Mineralogical studies of actively‐oxidizing cave isolates will allow for the 

identification of in vivo, biogenically produced Mn minerals, thus increasing our understanding of which 

Mn minerals in the fossil record or in extraterrestrial samples may be attributed to biological activity 

(Boston et al., 2001; Gorbushina et al., 2002). If these minerals are identified in samples from Mars, it 

would provide further evidence for the potential existence of life on the red planet. 

 

 

Experimental Procedures 

 

Field description 

Carter Salt Peter Cave (Carter County, Tennessee, Fig. 1), located in the Ordovician Knox Dolomite unit 

of the upper Tennessee River Basin, is a relatively shallow, epigenic cave system. The cave is particularly 

enriched in ferromanganese (mixed Fe and Mn) deposits, which are visually identified as black/chocolate 
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brown deposits that coat the surfaces of cave rocks, walls, and speleothems (e.g., flowstone, dripstone, 

soda straws, corrosion residue). Environmental conditions within the dark zone of the cave are typical of 

those found in other similar cave systems (Northup and Lavoie, 2001): ambient air temperature hovers 

around MAST (Mean Annual Surface Temperature) for the region (13°C) and humidity approaches 

100%.  

 

Sample collection 

Samples were collected for cultivation-based experimentation from two Mn-oxidizing cave biofilms in 

Carter Salt Peter Cave (herein CSPC), Mn Falls and Mud Trap Falls (Fig. 1), in May 2011 and June 2011. 

Biofilms were screened in situ for the presence of Mn oxides using 0.04% Leucoberbelin Blue (LBB), a 

redox indicator that is oxidized by Mn(III) or Mn(IV) to produce a bright blue color (Krumbein and 

Altmann, 1973). Care was taken to sample at locations within the biofilm matrix that tested LBB-positive 

for Mn(II)-oxidation.  

 

Cultivation of cave methanotrophs: Bacteria that utilize methane as a sole source of carbon and energy  

Samples that were designated for the cultivation of cave methanotrophs were stored on ice, transported to 

the lab, and immediately inoculated on media by spreading 100 µL of a 1% v/v biofilm sample in 0.02M 

HEPES buffer (pH 7.2) on agar-solidified media. Four different media types targeting organisms involved 

in the catabolism of methane were developed and utilized in cultivation efforts. NMS (Nitrate Mineral 

Salts) (Chapter Two) and AMS (Ammonium Mineral Salts), designed by Dr. Trevor Craig, were designed 

to target cave methanotrophs and contained methane as the sole carbon source. AMS Media contained (in 

g L-1) 0.7 K2HPO4, 0.54 KH2PO4. 1.0 MgSO4•7H2O, 0.2 CaCl2•2H2O, 0.004 FeSO4•7H2O, 0.5 NH4Cl, 1 

mL Trace Element Solution (containing in mg L-1 100 ZnSO4•7H2O, 30 MnCl2•4H2O, 300 H3BO3, 200 

CoCl2•6H2O, 250 CuSO4•5H2O, 20 NiCl2•6H2O, 60 6 Na2Mo4•2H2O). pH of the media was adjusted to 

ca. 7.1-7.2 before autoclaving, and 15 g agar was added for plates. AMS media was supplemented post-

autoclaving with sterile 0.02 M Hepes buffer pH 7.2, 5 µM ferrous ammonium citrate, 0.2% v/v vitamin 



  132 

 

solution for J medium (Tebo et al., 2007), and 100 µM MnCl2. AMS and NMS agar plates were incubated 

at 10°C in the dark (to mimic cave conditions) in a sealed chamber with a 50:50 CH4(g):air mix.   

 CM1 (Cave Methanotroph Media 1) and CM2 (Cave Methanotroph Media 2) , modified versions 

of Gerretsen Medium and Beijerinck Medium (Bromfield and Skerman, 1950) respectively, were also 

designed to target cave methanotrophs. However, CM1 and CM2 media contained both methane and 

citrate as carbon sources. CM1 media contained (in g L-1) 20 calcium citrate tetrahydrate, 2 (NH4)2SO4, 

0.01 NH4MgPO4. CM2 media contained (in g L-1) 20 calcium citrate tetrahydrate, 0.5 NH4Cl, 0.5 

K2HPO4. pH of each media was adjusted to ca. 7-7.2 before autoclaving, and 20 g agar was added for 

plates. CM1 and CM2 media were supplemented post-autoclaving with sterile 0.02M Hepes buffer pH 

7.2, 100 µM MnCl2, 4 µM FeCl2•4H2O, and 0.04 µM CuSO4 and incubated at 10°C in the dark (to mimic 

cave conditions) in a sealed chamber with a 50:50 CH4(g):air mix.  

 Mn(II)-oxidation in isolates was assessed via LBB colorimetric determination as previously 

described. Individual colonies of interest were re-streaked for isolation a minimum of three times. Once a 

colony was isolated, a colony PCR reaction was initiated to screen the microorganism for phylogenetic 

placement (Table 1) using the universal bacterial primer 357F 5’CCTACGGGAGGCAGCAG (Chapter 

Two), which targets a region within the 16S rRNA gene sequence. Phylogenetic affiliation of isolates was 

determined by BLAST analysis (Johnson et al., 2008). 

 

Cultivation of cave methanogens: Anaerobic archaea that generate methane through 

chemolithoautotrophic processes 

Samples that were designated for the cultivation of cave methanogens were inoculated in situ using 

anaerobic techniques. Briefly, a 5 mL syringe with a 16G, 11/2″ needle (BD Biosciences, Franklin Lakes, 

NJ ) attached was thoroughly flushed five times with sterile N2 (g). The syringe was then plunged deep 

into the base of the biofilm and material was drawn up into the syringe. Prepared media tubes containing 

either 10 mL Slurry or Tennessee Methanogen Media (TMM) were then inoculated in situ with 

approximately 1 mL of biofilm material. This procedure was repeated for samples obtained from each 
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biofilm. TMM media, a modified version of a basal medium targeting Methanobrevibacter spp. (Asakawa 

et al., 1993), a known member of the CSPC ferromanganese deposit microbial consortia (Chapter Two), 

contained in g L-1 0.75 KH2PO4, 0.75 K2HPO4, 1 NH4Cl, 0.36 MgCl2•6H2O, 1 yeast extract, 9 mL trace 

metal solution (Morii et al., 1983). pH of the media was adjusted to ca. 7-7.2, and the media was moved 

into an anaerobic chamber. Once in the chamber, 10 mL of media was aliquoted into each culture tube, 

and the tubes were sealed with stoppers and crimped. Tubes were then moved out of the chamber, flushed 

with 80/20% v/v N2/CO2 headspace, and autoclaved. Each individual tube was supplemented post-

autoclaving with the following sterile, anaerobic additions to a final concentration of 0.5X Balch vitamins 

(Balch et al., 1979), 0.03M NaHCO3, 1 mM Na2S, 1.5 mM L-cysteine hydrochloride, 0.0005% resazurin 

solution. Slurry media was prepared using the same methodology as described above and consisted of 

sterile, anaerobic water, with an 80/20% v/v N2/CO2 headspace. 0.0005% (final concentration) sterile, 

anaerobic resazurin solution was added to each individual tube post autoclaving.  

 Post inoculation, cultures were transported back to the lab and immediately checked to ensure the 

maintenance of anaerobic conditions by colorimetric screening via resazurin indicator. Any cultures with 

a pink tint, indicating aerobic conditions, were killed with 10% bleach and discarded. Cultures that 

maintained anaerobic conditions were flushed with an overpressure of 12 psi H2. Cultures were incubated 

horizontally (to allow for maximum contact with the H2/CO2 headspace in the tubes) and at 10°C in the 

dark (to mimic cave conditions).  Methane production by cultures was assessed every two weeks by gas 

chromatography, using a Shimadzu GC-2014 (Shimadzu Corporation, Kyoto, Japan) and external 

standards of 0.1%, 0.45%, 1%, 2%, 5%, and 10% CH4. 

 

Mineralogy of biogenic Mn oxides: TEM microscopy and elemental analysis  

Five actively-oxidizing (as confirmed via LBB colorimetric screening) cultures isolated from a prior 

study (Chapter Two) were examined using a JEOL JEM-400 transmission electron microscope (TEM) 

equipped with an Oxford INCA energy dispersive X-ray detector (EDS) to confirm the presence of 

precipitated manganese associated with microbial cells (Fig. 2): Janthinobacterium sp. A6, 
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Flavobacterium sp. E8, Leptothrix sp. G6, Arthrobacter sp. L, and Pseudomonas sp. Mn Falls 11.  

Samples were prepared and imaged as previously described (Chapter Two). 
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